Genome Sequencing and Structural Variation

Peter Robinson

January 7, 2014

Abstract

This file explains how you can do the analysis discussed in the lecture.
Note that the analysis is not necessarily being done in an elegant way or
with the most optimal settings, it is merely designed to allow you to get
started quickly.

Introduction

The goal of this tutorial is to perform read-depth mapping on human chromo-
somal data using a simplified version of the algorith described in Yoon S et
al. (2009), Sensitive and accurate detection of copy number variants using read
depth of coverage, Genome Res 19:1586.—1592.

Data

Download a BAM file from the thousand genomes project data. To keep things
simple, I downloaded just two chromosomes from this directory!. Here are the
files you will need (of course, you can use other files if you like, just change the
commands correspondingly).

HG00155.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
HGO0155.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
HGO00155. chrom20.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
HGO0155. chrom20.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai

Convert the BAM files to their text-based equivalent SAM files. To do this,
you can use the samtools package?. I am going to show the commands as if
everything is visible in PATH.

$ samtools view -h -o chrXYZ.sam -q 30 $XYZ.bam

You can read the man pages for samtools for a detailed introduction, but the
above command converts BAM to SAM format, includes the header (-h), filters
out reads with a mapping quality below PHRED 30 (-q 30), and outputs (-o)
to a file called chrXYZ.sam. Do this separately for the chromosome 11 and
chromsome 20 BAM files. Examine the files now:

$ less -S chrill.sam

Lftp://ftp.1000genomes.ebi.ac.uk/voll /ftp/data/HG00154 /alignment /
2http://samtools.sourceforge.net/

Congult the slides for the first lecture or the SAM documentation for details
on the SAM format. You will see there are a number of header lines starting

with @, followed by lines for individual reads

SRR101476.10329748 99 11 177542 41 76M = 177892 425 AAATGGAGAA. ...

You will note that all reads are localized to chromosome 11 (this is the third
field). For read depth mapping, we will extract the start positions of the reads
from this file (the fourth field, in the above example, 177542). We will use awk
to do this. The following command skips lines that start with @ (i.e., !'/°@/),
and then prints out the fourth field of each line (print $4) and redirects the
output of awk to a new file called chril.pos.

$ awk ’!/"0/ {print $4}’ chrill.sam > chrill.pos

This gives us a file that looks like

7832406
7832433
7832433
7832447
7832465
7832482

We now want to count up the number of reads in 1000 nt windows spread
across the chromosome. This is the sort of thing that Perl excels at.

#!/usr/bin/perl -w
use strict;
use POSIX;

my ’jcounts;
my $fname = "chrill.pos";
open my $fh,$fname or die "$!";

my $windowsize=1000;
my $c=0;
my $pos = $windowsize;

my $windowsize=10000;
my $c=0;
my $pos = $windowsize;
while (my $x=<$fh>) {
chomp($x); ## $x is now one of the positions, e.g.,87040297
my $bucket = $x - xVwindowsize + 1000; ## round up to next thousand

$counts{$bucket}++;

numerical sort

foreach $b (sort { $a <=> $b } keys Ycounts) {
print "$b\t$counts{$b}I\n";

}

Assuming we have the above codde in a file called countReads.pl, we can run
the command

$ perl countReads.pl > RD.tab
Now, we can finally plot the data in R

> dat <- read.table("RD.tab", header=FALSE,col.names=c("pos","count"))
> dat$pos <- (1/1e6)*dat$pos ## correct for window sizee
> plot(datpos,datcount,type="p",pch=".",

xlab="Position on chromosome 11",ylab="reads per kb")

300

reads per kb
150

i
T
0

20000 40000 60000 80000 100000 120000 140000

Position on chromosome 11

The ggplot2 package in R can be used to make quite nice-looking graphics.
or

library(ggplot2)
dat <- read.table("RD.tab", header=FALSE,col.names=c("pos","count"))
dat$pos <- (1/1e6)*dat$pos
df <- data.frame(count=dat$count,position=dat$pos)
ggplot(df, aes(x=position, y=count)) +
geom_point(alpha = .1) +
theme_bw() +
xlab("Chri1l (Mb)")

GC Bias

Let us now investigate whether there is a GC-bias. The following perl code will
get the job done, but this is probably the sort of thing that is better done in C.
First, download the file for the human chromosome 11 from UCSC? and g-unzip
it. Then run the following code.

#!/usr/bin/perl -w
use strict;
my $fname="chril.fa";
open my $fh,$fname or die "$!";
my %gc;
my $ACGT=0;
my $GC=0;
my $windowsize=1000;
my $pos=0;
my $i=0;
while (<$fh>) {
chomp;
my @bases = split//;
loop over each base in curent line
foreach my $b (@bases) {
$pos++; ## position along chromosome, l-based
$b = uc $b; ## upper case
if ($b eq "C" or $b eq "G") {
$GC++;
$ACGT++;
} elsif ($b eq "A" or $b eq "T") {
$ACGT++;
} ## Note some bases can be "N", just skip them.

if ($pos % $windowsize == 0) { ## we have reached end of window
if ($ACGT==0) { ## just N bases here
$gc{$pos}=0;
} else {
$gc{$pos}=$GC/$ACGT;
}
$GC=0;
$ACGT=0; ## reset.
}
}
}

foreach $b (sort { $a <=> $b } keys %gc) {
print "$b\t$gc{$bI\n";
}

We now nead to read both data files into R and to merge them.

library(ggplot2)

3http://hg(lownloa(l.cse,ucsc.edu/goldenPath/hng/chromosomes/.

dat <- read.table("RD.tab", header=FALSE,col.names=c("pos","count"))
gc <- read.table("chrll.gc",header=FALSE,col.names=c("pos","gc"))
M <- merge(dat,gc,by="pos")
df <- data.frame(count=M$count,gc=M$gc)
1ml <- lm(M$count ~ M$gc)
summary (1m1)
Now plot using ggplot
ggplot(df, aes(x=gc,y=count,color=count)) +
geom_point (shape=20,alpha=0.1) +
geom_smooth() +
theme_bw ()

