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Today

In the previous lecture we discussed structural variation
(SV) and basic strategies for identifying SV by
whole-genome sequencing

We discussed read-depth analysis in some detail

Today, we will concentrate on an algorithm that exploits
information in readpairs for variant calling of insertions
and deletions
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Structural variants

Feuk L, et al. (2006) Structural variation in the human genome. Nat Rev Genet 7:85-97.
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Paired-end sequencing

Paired-end sequencing

Sequence both ends of a single
fragment with insert length typically
200–500 bp

Typical paired end run on an Illumina
GAIIx can achieve 2× 75 bp reads and
up to 200 million reads.

Graphic credit: Illumina
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Matepair sequencing

Matepair sequencing

Genomic libraries from the
terminal sequences of genomic
fragments that are of a uniform
length (e.g. sequence 25-50bp
terminal sequences of 3kb
genomic fragments).

When both tags of the
”mate-pair” are independently
mapped, they should be end up
being the expected uniform
distance apart (ie 3kb).

Graphic credit: Andry Vierstraete, Ghent
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Matepair Nomenclature: Insert size

The nomenclature for paired-end or matepair reads

Adapter(L)|-----40----|------------------------170-----------------|-----40-----|Adapter(R)

If we have two 40 bp paired-end reads with a 170bp middle piece, the insert size is calculated as

2× 40 + 170 = 250 nt. The fragment size is insert size plus length of both adapters (≈ 120 nt extra).



WGS & SVs
(2)

Peter N.
Robinson

Structural
Variants

Empirical
CDF

KS

MoDIL

Matepair sequencing

matepair with no structural variant

The insert size is identical with the mapped distance
between the paired sequence reads
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Matepair sequencing

matepair containing an insertion

Since the reference doesn’t have this insertion, the paired
reads mapped closer to one another on the reference
sequence than one would expect based on the insert size

Insertion size = insert size - mapping distance
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Matepair sequencing

Consider now two overlapping reads, Xi and Xj that
contain the same insertion

There is a consistent effect on mapping distance

insert-sizei −mapping-distancei ≈ insert-sizeJ −mapping-distancej
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Matepair sequencing

In reality, the mapping distance varies
from readpair to readpair

For a typical cluster of read pairs, the
observed distribution of mapped
distances is shown in grey

This can be modeled by a Gaussian
distribution with mean 208 bp and
standard deviation 13 bp

Lee S, Hormozdiari F, Alkan C, Brudno M (2009) MoDIL: detecting small indels from clone-end sequencing

with mixtures of distributions. Nature Methods 6:473–474
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Matepair sequencing

Today, we will examine a simplified version of MoDIL: detect-
ing small indels from clone-end sequencing with mixtures of
distributionsa.

a
Lee S et al. Nature Methods 6:473–474

To understand MoDIL, we will need to look at a few topics

Empirical distribution function

Kolmogorov Smirnov (KS) distribution

Expectation-Maximization Algorithm (review)
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Empirical distribution function

Consider the following fundamental problem: Let X1,X2, . . . be
an independent and identically distributed (iid.) sample from
a distribution function F . Then, what does F ”look like”?

We define the Empirical distribution function

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x) (1)

I is the indicator function.

IA(x) =

{
1 x ∈ A

0 x /∈ A
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Cumulative distribution function

The empirical distribution function is a type of cumulative dis-
tribution function (CDF). A CDF describes the probability that
a real-valued random variable X with a given probability distri-
bution will be found at a value less than or equal to x.

FX (x) = P(X ≤ x) (2)

The CDF thus represents the ”area so far” function of the
probability distribution.
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Cumulative distribution function

For a continuous random variable X , the CDF is defined in
terms of its probability density function f as follows

FX (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt (3)

For a discrete random variable X , the CDF is defined in
terms of its probability mass function f as follows

FX (x) = P(X ≤ x) =
∑
xi≤x

p(xi ) (4)
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CDF for Gaussian
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Empirical CDF for Gaussian
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CDF vs. empirical CDF

Thus, we have a dataset consisting of observed values of a ran-
dom variable X , i.e., x1, x2, . . . , xn consisting of observed values
of random variables that are iid or independent identically dis-
tributed, that are iid or independent identically distributed

There is a cumulative distribution function F (x)
representing the true, but potentially unknown distribution

We estimate F (x) using the empirical cumulative
distribution function based on sampling from the
distribution n times, F̂n(x)
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Empirical CDF

Consider now again the eCDF F̂n(x) =
1

n

∑n
i=1 I(Xi ≤ x)

For a fixed value of x , the indicator function I(Xi ≤ x) is a
Bernoulli random variable with parameter p = F (x)

Recalling that the binomial distribution corresponds to a
sequence of Bernoullis, nF̂n(x) follows a binomial
distribution with parameters n and F (x), i.e.
nF̂n(x) ∼ binom(n,F (x))
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Empirical CDF

Recalling that the expected value of a binomial random
variable X with X ∼ binom(n, p) is E[X ] = np, we have that

E[F̂n(x)] =
1

n
· E[n · F̂n(x)]

=
1

n
· E[binom(n,F (x))]

=
1

n
· nF (x)

= F (x)

Thus, E[F̂n(x)] = F (x), and thus the empirical CDF F̂n(x) is
an unbiased estimator of the true CDF F (x).

An alternative and more well known proof appeals to the law of large numbers
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Kolmogorov–Smirnov statistic

The Kolmogorov–Smirnov (KS) statistic Dn compares a CDF
with an empirical CDF

Dn = sup
x
|F̂n(x)− F (x)| (5)

Note that supx is the supremum (least upper bound) of x

It can be shown that limn→∞Dn = 0

Dn can be used as the basis of a hypothesis test
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Kolmogorov–Smirnov test

Under the null hypothesis,
√
nDn converges to the Kolmogorov

distribution

The goodness-of-fit test or the Kolmogorov–Smirnov test
rejects null hypothesis at level α if

√
nDn > Kα (6)

The critical values of the KS distribution (Kα) are
typically provided by the software (e.g., R) or can be
looked up in tables.

We will not go into detail on the derivation of the KS theorem. If interested, a good place to start looking is

Doob JL (1949) Heuristic Approach to the Kolmogorov-Smirnov Theorems Ann. Math. Statist 20:393–403,

which you can find online, as well as the Wikipedia entry
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Kolmogorov–Smirnov statistic

Let us now explore how we might use the KS test for investi-
gating insertions or deletions in WGS with paired-end or mate
pair sequencing.

Imagine we have the following cluster of read pairs that
have been mapped to the reference genome

The mapping distance for some is shorter than average
(red), and for others is longer than average (blue)
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Kolmogorov–Smirnov statistic

Let’s imagine we have a distribution of insert distances for a
cluster of readpairs. Based on the genome-wide distribution of
insert distances, we have estimated the mean for the insert dis-
tance of a cluster of reads as 208 bp with a standard deviation
of 13bp.

Histogram of reads
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Kolmogorov–Smirnov statistic

We will start off by comparing the ECDF from 25 reads drawn at
random from the true distribution with the actual distribution

> mu <- 208

> s <- 13

> reads <- rnorm(25,mean=mu,sd=s)

> ks.test(reads, "pnorm", mean=mu, sd=s)

One-sample Kolmogorov-Smirnov test

data: reads

D = 0.1371, p-value = 0.6848

alternative hypothesis: two-sided
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Kolmogorov–Smirnov statistic

Thus, with a P-value of 0.6848 there is not enough
evidence to reject the null hypothesis and we conclude
that the insert distances are normally distributed according
to N (µ = 208, σ = 13).
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Kolmogorov–Smirnov statistic

That is, we used the KS test to compare the observed
distribution of insert lengths with that which we expect
based on a Normal distribution, N (µ = 208, σ = 13).

The maximum distance between the two distributions of
D = 0.1371 is the KS statistic, and we used the R
command ks.test to perform the Kolmogorov–Smirnov
test.

The non-significant p-value of 0.6848 indicates that this
test gave us no evidence to reject the null hypothesis that
the two distributions are identical
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Kolmogorov–Smirnov statistic

We will now imagine we have a homozygous deletion of 24bp.
Then, on average readpairs will be mapped with at a distance
of 24bp more than if there were no deletion. This will have the
effect of shifting the mean to µ = 208 + 24 = 232, without
changing the standard deviation.
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Kolmogorov–Smirnov statistic

Performing the same ks test as above now yields

> ks.test(reads, "pnorm", mean=mu, sd=s)

One-sample Kolmogorov-Smirnov test

data: reads

D = 0.74, p-value = 1.421e-14

alternative hypothesis: two-sided
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Kolmogorov–Smirnov statistic

The two curves, as well as Ds are much more clearly
separated than in the first case

200 220 240 260

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Ds



WGS & SVs
(2)

Peter N.
Robinson

Structural
Variants

Empirical
CDF

KS

MoDIL

But why the KS test?

You may now be asking yourself why we should go to so much
trouble to compare data which is normally distributed with a
Normal distribution? Why not use a z-score or a t-test?

You would, of course, be perfectly correct

We have shown the above slides only to demonstrate how
the KS test works in general.

The KS test is a non-parametric test, meaning that it does
not make many assumptions about the distribution of the
data

In contrast to the z-score or the t-test, the KS test can be
used with data that are not (even close to being) normally
distributed
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Matepair sequencing

In fact, the empirical distribution of readpair mapped distances
is not Gaussian and it differs from sequencing library to se-
quencing library

Lee S et al. Nature Methods 6:473–474
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Two Sample KS Test

Therefore, because there is no analytic distribution that we can
use to model the distribution of insert lengths, we will use the
two-sample Kolmogorov–Smirnov test, which is used to test
whether two one-dimensional probability distributions differ.

We let F1(x) denote the first empirical CDF (with data
from across the entire genome), and F2(x) be the second
one (with data from the cluster of interest)

The two sample KS test is then defined as

Dn1,n2 = sup
x
|F1,n1(x)− F2,n2(x)| (7)

F1,n1 and F2,n2 are the empirical distribution functions for
samples 1 and 2 (with sample sizes n1 and n2)
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Two Sample KS Test

The null hypothesis is rejected at significance level α if√
n1n2

n1 + n2
Dn1,n2 > Kα

Tables are available in statistical software for the values of
Kα

For the two-sample KS test, Kα can be approximated by

Kα = c(α)
n1 + n2

n1n2

e.g., for α = 0.05, c(α) = 1.36, for α = 0.01, c(α) = 1.63
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Two Sample KS Test
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MoDIL

With all of this in hand, we can now examine the MoDIL algo-
rithm:
Lee S, Hormozdiari F, Alkan C, Brudno M (2009) MoDIL: detecting small indels from clone-end sequencing

with mixtures of distributions. Nature Methods 6:473–474

Bird’s eye view

1 Cluster matepairs

2 Estimate distribution of insert sizes across genome: p(Y )
3 For each individual cluster Ci , check by EM algorithm

whether the distribution of insert sizes corresponds to
homozygous reference, heterozygous indel, or homozygous
indel

Expectation: What haplotype does each read of Ci belong
to?
Maximization: Optimize KS statistic to estimate µ1 and µ2
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1) Cluster matepairs

Red arrows: genomic locus one bp after the left read

For each red arrow, all matepairs spanning the genomic
location (blue dotted line) are defined as the cluster
corresponding to that genomic location

Arrows # 1 & # 4: one matepair; arrows #2 and # 5: two mate pairs; arrow # 3: three matepairs



WGS & SVs
(2)

Peter N.
Robinson

Structural
Variants

Empirical
CDF

KS

MoDIL

1) Cluster matepairs

Algorithm 1 Cluster matepairs

1: for each mapped location Xi do
2: Find all {Xj}Lj=1 with overlap to Xi

3: Define cluster Ck = {X1,X2, . . . ,XL}
4: end for

The mapped locations Xi correspond to the arrows in the Figure

Note this algorithm allows closely located clusters to share matepairs
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2) Estimate genomewide distribution of insert
size

Use all readpairs with consistent mappings to estimate the
mean and the standard deviation of the insert size

Call this distribution p(Y ) . Note that p(Y ) is not

Gaussian and we will use the empirical CDF

Clone size
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genome wide peak distribution (deviously simulated)
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2) Estimate genomewide distribution of insert
size: p(Y )
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The empirical CDF of insert lengths is calculated as above

Shown here for the simulated reads from the previous slide
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Comparing p(Ci) to p(Y ) with no indel

Clone size
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On the left we see a density plot for 117 reads of a simulated cluster drawn
at random from the genomic insert length distribution.

The 2-sample KS test yields: D = 0.073, p-value = 0.5637
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Comparing p(Ci) to p(Y ) with 24 bp deletion

Clone size
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On the left we see a density plot for 117 reads of a simulated cluster drawn
at random from the genomic insert length distribution shifted by 24bp
(homozygous deletion).

The 2-sample KS test yields: 0.3121, p-value = 2.77× 10−10
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Estimating size of indel events

The expected size of an indel follows a Gaussian distribution

with mean µp(y) − µp(Ci ) and standard deviation σ =
σp(Ci )√

n
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Estimating size of indel events

Lemma

If y is the mean of the insertsize in the entire library and Xi is
the mapped insert size for readpair i in some cluster Cj , then
the random variable Zi = y − Xi represents the indel size
corresponding to readpair i . Then Z1,Z2, . . . ,Zn are random
variables with mean µZ and standard deviation σZ . If there are
n mate pairs in the cluster, then the expected value of their
mean is Gaussian distributed and the distribution of the sample
average has a standard deviation of σZ√

n
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Estimating size of indel events

Proof.

The fact that the sample mean converges to µZ is a
consequence of the law of large numbers, and the central limit
theorem implies that the variance of the sample mean will tend

to
σ2
Z
n

Thus as n, the number of readpairs in the cluster, grows,
our confidence in the size of the indel increases

Smaller indels can be predicted the higher the coverage is
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But...the human genome is diploid

During sequencing it is typically impossible to distinguish
between the matepairs coming from each of the
chromosomes.

Thus clusters actually consist of matepairs from both
haplotypes.

If the observed cluster is the site of a homozygous indel
both of the distributions will shift simultaneously.

If, however, the indel is heterozygous approximately half of
the observed matepairs will be generated from the shifted
distribution. while the other half will come from the
original, unshifted p(Y ).
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But...the human genome is diploid
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Mixture of distributions

To model the fact that there are two chromosomes
(haplotypes) from which the mapped paired reads can
come, MoDIL used two random variables to model the
expected indel size (one for each haplotype)

This is a mixture of distributions (MoD): Not of Gaussian
or binomial distributions as we have seen previously, but of
empirical CDFs (the empirical distribution of clone sizes,
p(Y ))

This is a classic application for expectation
maximization-type algorithms
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Mixture of distributions

Given a cluster Ci , MoDIL identifies the two distributions
which have the fixed shape of p(Y ) and arbitrary means
that best fit the observed data using the
Kolmogorov-Smirnov (K-S) goodness of fit test

If there is no indel, we expect µα = µβ = µp(Y )

if there is a homozygous indel, we expect
µα = µβ = µp(Ci ) 6= µp(Y )

If there is a heterozygous indel, then µα = µp(Y ) and
µβ = µp(Ci ) 6= µp(Y )

The means of the two distributions are found using the
Expectation- Maximization algorithm.
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EM: The hidden variables

We cannot observe which haplotype a given readpair comes
from

Previously, we defined Zi = y − Xi for the expected indel
size

In the diploid situation, we instead let Zi be represented
by two hidden variables, Zαi and Zβi , with m of the

readpairs being from Zαi and n of the readpairs from Zβi
If we somehow could observe which haplotype a given
readpair came from, it would be trivial to estimate the
indel size according to Lemma 1
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EM: The hidden variables

Now let s = {µ1, µ2} be the means of Zαi and Zβi

Note that MoDIL assumes that Zαi and Zβi have the same
shape as p(Y ), with the mean possibly being shifted, but
the form of the empirical CDF otherwise being identical

If we denote by γjt the likelihood that the j th readpair was
generated from haplotype t, then we define πt as

πt =

∑
j γjt∑

t∈{1,2}
∑

j γjt
(8)

πt is thus the estimated proportion of reads coming from
haplotype t1

1
recall the mixture parameter from lectures #8/#9.
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EM: The hidden variables

γjt is defined as the posterior probability that the j th

readpair was generated from haplotype t

γjt =
P(Zj |µt) × πt∑

t′∈{1,2} P(Zj |µt′ )× πt′

prior

Likelihood

Normalizing constant
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EM: likelihood term

But how do we calculate P(Zj |πt)? (Likelihood of insert
length Zj given haplotype t)?

We have the empirical CDF that is shifted according to
the value of µt

It can be shown that the size of the jump at x for the
empirical CDF is the value of the probability mass function
at x .

Clone size

D
en

si
ty

11 12 13 14 15 16
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x

f(13)

The probability of a read of length 13 is shown by the jump at x = 13 (red)
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EM: Expectation Step

The E-step therefore estimates the responsibility of the two
distributions for each readpair γjt using the current values for
µ1 and µ2 using equation (9).

γjt =
P(Zj |µt)× πt∑

t′∈{1,2} P(Zj |µt′ )× πt′
(9)
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EM: Maximization Step

The M-Step searches for an optimal s = {µ1, µ2} to minimize
the sum of the Kolmogorov–Smirnov goodness of fit statistics
for the two haplotypes as shown in equation (10).

D =
∑

t∈{1,2}

πt sup
z
|F 0

t (z)− Ft(z)| (10)

supz |F 0
t (z)− Ft(z)| is the two-sample KS statistic,

whereby F 0 is the empirical CDF of the genome-wide
distribution and Ft is the empirical CDF for the cluster
(whose mean may be shifted)

πt is the prior probability of a read belonging to haplotype
t
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EM: Maximization Step

F 0
t (z) is the eCDF for z , weighted by the posterior that the

read belongs to the haplotype t (γjt)

F 0
t (z) =

1∑
i γit

L∑
j=1

γjtI(Zj ≤ z) (11)

Recall that Zj = µp(Y ) − Xj , where µp(Y ) is the library-wide
mean insert size
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EM: Maximization Step

Similarly, Ft(z) is the eCDF for z according to the distribution
of of p(Y − y + µt), i.e., the shifted distribution of p(Y ) with
mean µt

Ft(z) =
1∑
i γit

L∑
j=1

γjtI(Zj ≤ z) (12)

Recall that for the (potentially shifted) distribution of
haplotype t of cluster i , Zj = µt − Xj , where µt is mean insert
size for haplotype t of cluster i
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EM: Maximization Step

In the M step, a range of possible indel sizes are evalu-
ated in order to find the s = {µ1, µ2} that minimizes D =∑

t∈{1,2} πt supz |F 0
t (z)− Ft(z)|.

To search for insertions, the space [−1000, y ] is searched,
where y is the mean library insert size.2

1000 is an arbitrary bound that may be altered depending
on the experimental parameters

To search for deletions, the space [µC − 100, µc + 100] is
searched, where µC is the mean of all the mapped
distances in the cluster.

2Recall that an insertion reduces the mapping distance. Note that MoDIL
cannot find insertions greater than the insert size.
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EM: Maximization Step

Algorithm 2 Expectation Maximization

1: Initialize s = {µ1, µ2} and π1 = π2 = 0.5.
2: repeat
3: E step: estimate posterior probability γjt

for each readpair using current parameters

and Eq. (9)

4: M step: update s = {µ1, µ2} by minimizing KS

statistic according to Eq. (10); update π1

and π2 by Eq. (8).

5: until KS statistic reaches (local) optimum
6: Discard cluster if KS test rejects null

hypothesis3

3
Then, the cluster insert sizes do not follow the expected distribution p(Y ) and likely represent an artifact
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MoDIL: Bells and Whistles

While the above pages give the gist of the MoDIL algorithm,
there are a number of heuristics and additional features that
will be summarized at a bird’s eye level here

To initialize s = {µ1, µ2}, consider that most clusters have
no indel, so it is prudent to initialize to s = {0, 0}
The second most common case is a heterozygous indel. In
this case, the size of the indel should be twice the sample
mean of the expected size of indels, Zj , which is

2µC =
2∑
i γit

∑L
j=1 γjtZj

Thus in a second iteration, initialize to s = {2µC , 0}.
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MoDIL: Bells and Whistles

A number of other heuristics are used to avoid overfitting prob-
lems, explore the search space, and deal with noisy data

Indel events are weighted according to heterozygous >
homozygous > mixed (two different indels)

A factor graph is used to assign unique mapped locations
to readpairs (e.g., a read pair may be mapped incorrectly
due to repeats)

Adjacent compatible clusters are merged

Clusters are classified as heterozygous or homozygous
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MoDIL: Evaluation

recall: fraction of true indels that were called

Recall =
| {Called indels} ∩ {True indels} |

| {True indels} |
(13)

precision: fraction of called indels that truly are indels

Precision =
| {Called indels} ∩ {True indels} |

| {Called indels} |
(14)
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MoDIL: Evaluation

Heatmap: power of MoDIL to detect heterozygous variants of various sizes at different coverage levels.

dark red means 70% error/30% correct

dark blue 0% error/100% correct.

What does this tell us about our ability to identify indels
of different sizes? Why do you think this is so?
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Finally...

Why do you think the authors of MoDIL use the KS goodness
of fit test instead of maximum log likelihood for their version
of the EM algorithm?
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Finally...

Consider the effect of outliers . . .

180 200 220 240

0.
0

0.
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0.
8

1.
0

x

Ds

µ̂MAP =
1

N

N∑
i=1

xi

Maximum likelihood estimator for the mean of a Gaussian

Does it matter how extreme the lowest
value, say, in the eCDF is? How does this
effect our estimate of DS ?
Recall the definition of the Empirical
distribution function

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x)

Recall this expression for the maximum likelihood estimate of µ

from the lecture on SNV calling

What effect do individual extreme values (outliers) have here?
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Finally...

The KS test was chosen instead of the maximum log likelihood
because of its robustness to outliers.

The log likelihood is sensitive to samples with low density
in a distribution.

For example, if Zj is far away from the mean of the
distribution, then it significantly reduces the log likelihood,
and to minimize the effect, the mean of the distribution
will be shifted toward this outlier. Thus, if there exist a
few outliers in a cluster, it may falsely predict that there is
an indel even though majority of samples suggest no indel.

In contrast, the K-S statistic is largely influenced by
samples with large density in the distribution, and is quite
insensitive to outliers, which is a desirable property for
noisy datasets.
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Summary

Important topics from this lecture

cumulative distribution function

empirical CDF

Kolmogorov–Smirnov distribution/test

Effect of indels on mapped insert size

relation between number of read pairs in a cluster, size of
an indel, and detectability
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The End of the Lecture as We Know It

Email:
peter.robinson@charite.de

Office hours by
appointment

Lectures were once useful; but now, when all can read, and books
are so numerous, lectures are unnecessary. If your attention fails,
and you miss a part of a lecture, it is lost; you cannot go back as

you do upon a book... People have nowadays got a strange
opinion that everything should be taught by lectures. Now, I
cannot see that lectures can do as much good as reading the
books from which the lectures are taken. I know nothing that

can be best taught by lectures, except where experiments are to
be shown. You may teach chymistry by lectures. You might

teach making shoes by lectures!

Samuel Johnson, quoted in Boswell’s Life of Johnson (1791).
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