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Charité Universitätsmedizin Berlin

Genomics: Lecture #15



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

Outline

1 Gene Regulation in Eukaryotes

2 3D Organization of Genomes

3 hi-C

4 Normalizing Hi-C Data

5 Poisson regression: GLMs

6 HiCNorm



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

The Purpose of Gene Regulation

Housekeeping genes are typically constitutive genes that are
required for the maintenance of basic cellular function, and are
expressed in all cells of an organism under normal and patho-
physiological condition

Examples: Genes involved in . . .
Carbohydrate metabolism
Citric acid cycle
Cytoskeleton
. . .
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Gene Regulation

Some genes are expressed only when a cell enters a particular
pathway of differentiation.

Bone marrow pluripotent stem
cells in the hematopoietic
compartment may either
self-renew or give rise to eight
different hematopoietic lineages
through a gradual process of
commitment and
differentiation. Socolovsky M et al. (1998) PNAS 95:6573-5.
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Gene Regulation

Some genes are expressed are expressed constitutively in only
those cells that have differentiated into a particular type of cell

Beta-globin and alpha-globin
make up HbA, the most
common form of hemoglobin in
adults. Expression of this gene
is highly specific for the
erythrocyte lineage
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Gene Regulation

Some genes are expressed are expressed in response to stimuli.

Ovarian follicles are restrained
at an immature stage until
stimulated by
Follicle-stimulating hormone
(FSH) secreted by pituitary
gonadotropes. FSH regulates
the development, growth,
pubertal maturation and,
reproductive processes of the
body. AKT is an essential
downstream effector of the
FSH signal.

Hunzicker-Dunn ME et al. (2012) PNAS

109:E2979-88.
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Gene Regulation

There are many methods by which the cell can regulate gene
expression

Alter rate of transcription of a gene (probably most
important)

Alter rate of processing of the RNA transcripts, including
splicing

Alter the stability of the mature mRNA

Alter the rate of translation of the mRNA into polypeptide

(Alter the stability and activity of the protein)
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Gene Regulation

Today we are going to talk about regulation of the rate of
transcription of genes by means of long-range three dimensional
interactions between promoters and enhancers.

The following terminology is not used in a consistent way in
the literature, but we will give reasonable definitions of the
following elements that are the main “actors” in our story.

Transcription start site

The core/upstream promoter

enhancers

silencers
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Simple eukaryotic transcriptional unit

A simple core promoter (TATA), upstream activator sequence
(UAS) and silencer element spaced within 100–200 bp of the
TATA box that is typically found in unicellular eukaryotes.

Organismal complexity correlates with an increase in both the
ratio and absolute number of transcription factors per genome.

Organism Genes Transcription Factors Ratio TF:Gene

Yeast ∼ 6275 ∼ 300 1:20
Human ∼ 20,000 ∼ 3000 1:7
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Simple eukaryotic transcriptional unit

A complex arrangement of multiple clustered enhancer mod-
ules interspersed with silencer and insulator elements which can
be located 1050 kb either upstream or downstream of a com-
posite core promoter containing TATA box (TATA), Initiator
sequences (INR), and downstream promoter elements (DPE).

Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147-51.
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The core promoter

Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of

gene expression. Genes Dev 16:2583-92.

The core promoter (aka: “basal” promoter) is located within about 40 base
pairs (bp) of the start site

Found in all protein-coding genes, relatively similar, bound by a large
complex of about 50 proteins including Transcription Factor IID (TFIID).
itself a complex of TATA-binding protein and 13 other proteins,

Transcription Factor IIB (TFIIB) which binds both the DNA and Pol II.
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The upstream (regulatory) promoter

Cheng H,et al (2004) Hum Mol Genet 13:1563-75.

The ”upstream” promoter, which may extend over as many as 200 bp
farther upstream and that greatly differ from gene to gene.

Cis-regulatory elements upstream of the transcription start site in the
rhodopsin promoter include Eopsin-1, Ret-1, BAT-1, NRE, Ret-4 and
TATA-box.
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Enhancers

Enhancers are short DNA sequences with binding sites for sev-
eral transcription factors that are largely responsible for speci-
ficity of gene expression patterns in a given cell. Enhancers
may be located thousands (or tens/hundreds of thousands) of
base pairs away from the gene they control.

Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene

expression. Nat Rev Genet 12:283-93.
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Enhancer characteristics

Cohesin may facilitate enhancer–promoter
interaction by bringing them into close
proximity

Mediator (a ∼ 30 subunit complex)
coordinates signals between enhancers and
general transcription factors by interaction
between RNAP2 and site-specific factors

Histone modifications mark active
enhancers is specific cell types

Enhancers themselves may be transcribed
(eRNA), the function of eRNAs is still
largely unknown

Enhancers/Promoters interact with other
non-coding RNAs to implement gene
regulatory programs
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Silencers and Insulators

Silencer elements (S) are sites of initiation of heterochro-
matin, which spreads and encompasses promoters (P2 in the
diagram), silencing transcription.

Raab JR, Kamakaka RT (2010) Insulators and promoters: closer than we think. Nat Rev Genet 11:439-46.

The I1 insulator functions to restrict the spread of heterochromatin.

An enhancer (E1) that is present in an active chromatin domain flanked by
insulators (I1 and I2) and that is bound by a transcription factor (TF) is
able to communicate with a promoter (P1) in the same domain

Another enhancer (E2) is unable to communicate with promoter P1
because of an intervening insulator (I2).



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

Enhancers and Looping

Chromatin looping facilitates interactions between enhancers
and promoters. Looping is tissue and development specific, dy-
namically regulating gene expression. In the rest of this lecture,
we will concentrate on the use of genomic chromatin interac-
tion data to investigate looping.

Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene

expression. Nat Rev Genet 12:283-93.
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Chromosome conformation capture

The family of chromosome conformation capture (CCC) tech-
niques is a set of biochemical approaches to determine the phys-
ical interaction of genome regions.

CCC-technology approaches:

invariably involve five wetlab steps

require computational analysis to determine interaction
frequencies captured in the ligation of the crosslinked
chromatin.
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CCC: 1- Fixation

(1) formaldehyde fixation to crosslink chromatin at sites of
physical interaction
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CCC: 2- Cleavage

(2) cleavage of chromatin by restriction enzyme or sonication
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CCC: 3- Ligation

(3) ligation under dilute conditions favoring ligation between
DNA ends captured on the same complex (intramolecular lig-
ation) over ligations from random collisions
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CCC: 4- Reverse crosslinks

(4) Reverse the formaldehyde-induced crosslinks

Cross-links are reversed by heating, Proteinase K digestion, and
phenol-chloroform extraction.
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CCC: 5- Detection

(5) detection of ligation junctions using variable molecular bi-
ology steps. Methodology depends on whether we are doing
3C, 4C, 5C, hi-C, etc.

Images from Hakim O, Misteli T (2012) Cell 148:e1068
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CCC: 3C

3C: The simplest CCC technology. We use one targeted quanti-
tative PCR (Q-PCR) for each interaction we want to measure.
Shown here: constant fragment (black segment) and candidate
interacting fragments (red, blue, green and pink segments). Re-
striction sites that will be used in the 3C assay are depicted as
small vertical bars in blue.

Hagege H et al (2007) Nat Protoc 2:1722-33.
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CCC: 3C

3C data for the CFTR gene. Interaction frequencies between
the promoter (grey bar) and various other regions are measured
with specific Q-PCR primer combinations. Peaks suggest in-
creased frequency, ergo, substantial interaction between the
promoter and some distant element.

Dekker J et al (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin

interaction data. Nat Rev Genet 14:390-403.
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CCC: 4C

A particular derivative of 3C method named circular chromo-
some conformation capture (4C) enables de novo detection
of all interacting partners of a known genomic region,

Zhao Z et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of

epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341-7.

Red and blue arrows and rectangles ⇒ the nested primers
within the H19 imprinting control region, which is
common to all 4C products.

Gray line ⇒ any sequence interacting with the H19 ICR
and captured by the 4C approach.
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CCC: 4C

3C and 4C generate single interaction profiles for individual
loci (anchor). In contrast to 3C, 4C generates a genome-wide
interaction profile for the single locus.

Dekker J et al (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin

interaction data. Nat Rev Genet 14:390-403.
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CCC: 3C-Carbon Copy – 5C

5C uses highly multiplexed ligation-mediated amplification
(LMA) to first copy and then amplify parts of the 3C library
followed by detection on microarrays or by quantitative DNA
sequencing.

Dostie J et al (2006) Genome Res 16:1299-309.



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

CCC: 5C primer design

Dostie J et al (2006) Genome Res 16:1299-309.

Forward 5C primers anneal to the sense strand of the 3-end of
restriction fragments and include half of the selected restriction site.

All forward primers feature a common 5-end tail containing the T7
promoter sequence.

Reverse 5C primers anneal to the antisense strand of the 3-end of
restriction fragments, including half of the restriction site.

All reverse primers contain a common 3-end tail featuring the
complementary T3 sequence (T3c) and are phosphorylated at the
5-end.

5C forward and reverse primers anneal to the same strand of
head-to-head ligation products present in the 3C library.
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CCC: 5C

5C interaction map. Each row represents an interaction profile
of a transcription start site (TSS) across the 1 Mb region on
human chromosome 11 that contains the β-globin locus. 5C
is many-vs-many and requires a large set of specific Q-PCR
primers. 5C essentially measure many anchored interac-
tion profiles in parallel.

Dekker J et al (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin

interaction data. Nat Rev Genet 14:390-403.
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CCC: 5C

5C analysis strategy (for one particular reference point)

Sanyal A et al (2012) Nature 489:109-13.

W5C interaction profiles for promoter of ACSL6 gene

solid red lines ⇒ the expected interaction level

The dashed red lines ⇒ ±1 standard deviation.

5C signals that are significantly higher than expected are considered
looping interactions.
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hi-C

HiC enables an all-versus-all interaction profiling.

Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles

of the human genome. Science 326:289-93.

unbiased genomewide analysis

Heat map shows contact matrix for chromosome 14



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

hi-C: Methodology

Lieberman-Aiden E et al (2009) Science 326:289-93.

Here, two spatially adjacent chromatin segments (blue/orange) are
connected by protein-protein interactions

They are crosslinked by formaldehyde and digested by Hind III
(aaactt)
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hi-C: Methodology

Hind III digestion leaves a four-nucleotide overhang on the restriction
fragments

5’-AGCTT-3’

3’-A-5’

This cleavage provides a template for labeling the restriction
fragments with biotin-14-dCTP

The overhang is filled in by the Klenow fragment of DNA polymerase
I using equimolar amounts of all deoxyribonucleotides with the
substitution of biotin-14-dCTP for dCTP.
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hi-C: Methodology

Lieberman-Aiden E et al (2009) Science 326:289-93.

Processing by the Klenow fragment results in two fragments with
blunt ends that are still cross-linked to one another

They are ligated to one another in a dilute solution that favors
intra-molecular ligation

The ligation of two filled in HindIII sites results in a new NheI site
(5’-GCTAGC-3’)
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hi-C: Methodology

Lieberman-Aiden E et al (2009) Science 326:289-93.

Process fragments with proteinase K at 65◦C

Purify/shear DNA, pull down with streptavidin beads

Illumina paired-end sequencing (50bp)
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hi-C: Sequence Read Mapping/Filtering

B

B

Paired end sequencing of the two fragments

Optimally, we pull down a fragment that is biotin-marked at the
ligation point of two distinct fragments

We can now count the number of times distinct pairs of genomic
regions are connected
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hi-C: Artefacts

If two reads come from the same HindIII fragment, it represents an
artefact

Self circle: self-circularized ligation product

Dangling end: An unligated product



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

hi-C: Quality control

Belton JM et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods

58:268-76.

Recall that HindIII digestion leaves us with the overhang AGCT. If
two such overhangs are filled in and then blunt-end ligated, we obtain
a new NheI site: 5’-GCTACG-3’.

The shift of the size distribution of the library following digestion
with NheI estimates the proportion of the library that consists of real
HiC ligation products.

Here: library 1 ⇒ poor performance, library 2 ⇒ medium
performance and library 3 ⇒ good performance.
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hi-C: Computational analysis

Basic analysis strategy: divide the genome into 1-Mb regions,
and define the matrix entry mij to be the number of ligation
products between region i and region j .

Lieberman-Aiden E et al (2009) Science 326:289-93.

The figure represents the contact matrix M for chromosome 14 as a
heatmap
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hi-C: Computational analysis

Hi-C can be used to investigate the organization of chromo-
some territories

Lieberman-Aiden E et al (2009) Science 326:289-93.

We will call the 1-Mb regions “loci”

Let In(s) be the average intrachromosomal contact probability on
chromosome n for pairs of loci separated by a genomic distance s

Probability of contact decreases with genomic distance

Intrachromosome contacts more common than interchromosomal
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hi-C: Computational analysis

We define a normalized contact matrix M∗ by dividing
each entry of the contact matrix M by the genome wide-
average contact probability for loci at that genomic
distance

For loci i and j , which are at a distance of s(i , j) to one
another, the element of M∗ is thus

mij

I (s(i , j))

The normalized matrix shows many patterns that were less
apparent in the original matrix
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hi-C: Computational analysis

Lieberman-Aiden E et al (2009) Science 326:289-93.

O/E matrix: loci with either more (red) or less (blue)
interactions than expected given their genomic distance

Pearson matrix: Correlation between the intrachromosomal
interaction profiles for every pair of 1-Mb loci

The plaid pattern indicates two compartments within the
chromosome
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hi-C: Computational analysis

plaid patterns were consistently seen for all chromosomes. The labels A and
B could be assigned so that sets on each chromosome with the same label
had correlated contact profiles.
These results imply that the genome can be divided into two spatial
compartments.

Lieberman-Aiden E et al (2009) Science 326:289-93.

(E) probes L1 and L3 (compartment A) are close to one another than to L2
(compartment B)
(F) probes L2 and L4 (compartment B) are close to one another than to L3
(compartment A)
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hi-C: Computational analysis

Compartment A correlates strongly with the presence of

Genes

higher expression

accessible chromatin activating (H3K36 trimethylation)
and repressive (H3K27 trimethylation) chromatin marks .

Thus, compartment A is more closely associated with open,
accessible, actively transcribed chromatin.
Lieberman-Aiden E et al (2009) Science 326:289-93.
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Systematic biases in Hi-C data

In Hi-C, the frequency of chromatin interaction is represented
by the number of paired-end reads linking two genomic se-
quences. In principle, higher counts indicate increased fre-
quency of chromatin interaction and closer spatial distance be-
tween the two sequences, but systematic biases in the data
can greatly affect interpretation.

In the remaining time, we will examine the reasons for
these biases and then present a methodology that uses a
generalized linear model to correct for bias.
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Systematic biases in Hi-C data

Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to

characterize global chromosomal architecture. Nat Genet 43:1059-65.

Note here that most of the reads are located with 500 bp
of the HindIII (or NcoI) restriction sites

This is as expected given that the size selection parameter
in the experiment was 500bp

However, there are additional reads distributed nearly
uniformly across the entire fragment – likely to represent
artifacts
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Systematic biases in Hi-C data

Yaffe E, Tanay A (2011) Nat Genet 43:1059-65.

(C) Length of restriction fragments (in other words, the
distance between adjacent cutter sites) represents another
source of bias

For example, long and short fragments may have variable
ligation efficiencies or compete differently on ligations with
cis and trans fragment ends

(D) Restriction fragment lengths are indeed correlated
with trans-contact probabilities.
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Systematic biases in Hi-C data: G/C content

Yaffe E, Tanay A

(2011) Nat Genet 43:1059-65.

A known major source of bias in sequencing experiments is
the nucleotide composition of the DNA under study

G/C content had a major effect on the hi-C data, but in
different ways for HindIII and NcoI data
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Systematic biases in Hi-C data: Mapability

Yaffe E, Tanay A

(2011) Nat Genet 43:1059-65.

Mappability is predicted and confirmed to have a linear
effect on the estimated trans-contact probabilities.
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Poisson regression

In the final section of this lecture, we will examine a method
called HiCNorm, which is a normalization approach for remov-
ing biases in Hi-C data via Poisson regression. We will first
introduce the topic of generalized linear model, Poisson regres-
sion, and then show how it was used to allow an efficient and
effective normalization of Hi-C data
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Generalized linear models (GLM)

The simple straight-line regression model has the form:

yi = α + βxi + ε (1)

The regression model can be written, equivalently

E[y ] = α + βx (2)
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Generalized linear models (GLM)

GLM is a generalization of equation (2), which allows a
transformation of the left-hand side of the equation. In other
words:

f (E[y ]) = α + βx (3)

The result specifies a linear relation with x . The function f (·)
is called the link function; common examples of link functions

are f (x) = x , f (x) =
1

x
, f (x) = log(x) and

f (x) = log(x/(1− x)) (the latter function is the logit link).
Note all of these functions are monotonic.
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Generalized linear models (GLM)

Let us begin with a simple example. Categorical (yes/no) re-
sponses do not fit naturally into the framework linear regression,
which assumes normally distributed responses.

Suppose we are modeling some response (Y ) that is categorical
yes/no according to a Bernoulli distribution

Yi ∼ Bernoulli(pi ) (4)

This is in contrast to the assumption of linear regression:
Yi ∼ Normal(µi , σ), which corresponds to the least squares
equation

Y = Xβ + ε (5)

where β is a k × 1 vector of unknown parameters and ε is an
n × 1 vector of unobserved disturbances.
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Generalized linear models (GLM)

Lets imagine we have data with y ∈ {0, 1} and x ∈ Z+.

x y

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 1

15 0

x y

16 0

17 0

18 1

19 1

20 1

21 0

22 1

23 0

24 1

25 1

26 1

27 1

28 1

29 1

30 1

Let’s say we’re feeling
really stupid today and
decide to do standard
linear regression (which is
equivalent to GLM with an
identity link function)
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Generalized linear models (GLM)

In R, we could code this as follows:
dat <- read.table("example.txt",header=T)

attach(dat)

new <- data.frame(x = seq(1, 30, 0.5))

pr <- predict(lm(y ~ x), new)

plot(x, y)

matplot(new$x, pr, type = "l", ylab = "predicted y",add=TRUE)

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

● ● ●

●

●

●

● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y



3C to hi-C

Peter N.
Robinson

Gene
Regulation in
Eukaryotes

3D
Organization
of Genomes

hi-C

Normalizing
Hi-C Data

Poisson
regression:
GLMs

HiCNorm

Dumb Regression

The scatter plot on the previous slide is almost impossible
to interpret (There is some relationship between y = 1
and high x values compared to low x values, but it’s
impossible to see much else, much less to visualize the
correct regression line).

The predicted values for y are not even constrained to be
within [0, 1].

The only reasonable solution would seem to be giving up
our assumption of normality.

Briefly, the GLM used for two-category response variables
involves the logit link
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Bernoulli Regression

The logit link is defined as

f (y) = log
x

1− x
with x ∈ (0, 1) (6)
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Bernoulli Regression

In R, we can code Bernoulli GLM as
out <- glm(y ~ x, family = binomial)

#summary(out)

plot(x, y)

curve(predict(out, newdata = data.frame(x = x),

type = "response"), add = TRUE)
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Poisson Regression

Poisson regression is also a type of GLM where the response
variable is a count

Yi ∼ Poisson(λi ) (7)

Imagine we are naturalists in Kenia and have data on the number of matings for Bull elephants arranged

according to age. The age of the elephant at the beginning of the study and the number of successful

matings during the 8 years were recorded. We assume the number of matings follows a Poisson distribution,

where the mean depends on the age of the elephant in question.

Age Matings
27 0
28 1
28 1
28 1
28 3
29 0
29 0
29 0
29 2
29 2
29 2
30 1
32 2

Age Matings
33 4
33 3
33 3
33 3
33 2
34 1
34 1
34 2
34 3
36 5
36 6
37 1
37 1
37 6

Age Matings
38 2
39 1
41 3
42 4
43 0
43 2
43 3
43 4
43 9
44 3
45 5
47 7
48 2
52 9
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Poisson regression

Here we see Poisson regression (GLM) in red vs. standard linear
regression in green.
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Poisson regression

– R code

dat <- read.table("elephants.txt",header=TRUE)

attach(dat)

x<-as.numeric(Age)

y<-as.numeric(Matings)

plot(x,y,col = "darkblue",

main = expression(paste("Scatter diagram of ",

italic(Matings[i]), " against ",italic(Age[i]))),

xlab = expression(italic(Age[i])),

ylab = expression(italic(Matings[i])))

model<-glm(y ~ x, family = poisson)

predProbs<-predict(model,data.frame(x=seq(min(x), max(x), length.out=100)), type="response")

lines(seq(min(x), max(x), length.out=100), predProbs, col=2, lwd=2)

## Now linear model

ep.lm <- predict(lm(y ~ x), new)

matplot(new$x, ep.lm, type = "l", col=3,add=TRUE)
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Poisson regression

Recall that in linear regression, if the response variable has a
normal distribution, its mean can be linked to a set of
explanatory variables using a linear function:

Y = β0 +
∑
i

βiXi (8)

If the response variable is a count (all positive integers), the
Poisson is more appropriate. The logarithm of the response
variable is linked to a linear function of response variables

log(Y ) = β0 +
∑
i

βiXi (9)

equivalently

Y = eβ0 ×
∏
i

eβiXi (10)
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Poisson regression

In other words, Poisson regression expresses the log outcome
as a linear function of a set of predictors

Assumptions:

Logarithm of the response rate changes linearly with equal
increment increases in the exposure variable.

Changes in the rate from combined effects of different
exposures or risk factors are multiplicative.

At each level of the covariates the number of cases has
variance equal to the mean.

Observations are independent

Source: J Tropical Ped, Research Methods II: Multivariant analysis
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HiCNorm

HiCNorm uses three local genomic features to predict the hi-C
read count via Poisson regression, using this to correct the raw
counts before downstream analysis.

The genome is divided into 1-Mb bins, where Lji is the jth bin
on chromosome i . For each such bin, three attributes are
measures

Effective length

GC content

Mapability

Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS (2012) HiCNorm: removing biases in Hi-C data via Poisson

regression. Bioinformatics 28:3131-3.
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HiCNorm

A–B represents one genomic locus (i.e., 1-Mb bin)

6 restriction sites (red cross) partition the genomic region into consecutive, disjoint fragments.

The fragment end is the 500bp genomic region next to the restriction site (Frag01,...). Effective
length is sum of fragment ends minus overlap

GC content is calculated within a 200 bp region upstream (e.g., S2L_200 and S2R_200)

Mappability: create 55 subsequences (36bp each) in 500 bp around restriction site. Calculate
percentage of uniquely mappable reads
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HiCNorm

The Poisson regression in HiCNorm works as follows.

Let Ui =
{
uijk

}
1≤j ,k≤ni

represent the ni × ni Hi-C contact

map for chromosome i (ni is the number of 1-Mb bins)

Thus, uijk represents the number of reads spanning bins Lij
and Lik .

Let x ij , y ij , and z ij , represent the effective length, the GC

content, and the mappability at bin Lij .

We then assume that uijk follows a Poisson distribution with

rate parameter λijk

log λijk = βi0+βilen log(x ij x
i
k)+βg/c−c log(y ij y

i
k)+log(z ij z

i
k) (11)
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HiCNorm

The value for λijk is estimated from the Poisson regression1

The residual:
ê ijk

is the normalized cis interaction between two bins Lij and Lik .
Thus, we obtain a normalized matrix

U∗ =
{
ê ijk
}

1≤j ,k≤ni

This matrix is used for all downstream applications such as
that discussed previously in this lecture

1
This is performed by convex optimization, we have not covered this in this lecture.
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HiCNorm

The authors validated their program in various ways in general
the and the computing time for a typical dataset was about .

reproducibility between experiments was better than that
of competing approaches

Compute speed: 2 seconds compared to about 4 hours for
the major competing approach
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Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading
Belton JM et al (2012) Hi-C: a comprehensive technique to capture the
conformation of genomes. Methods 58:268-76.

Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS (2012) HiCNorm:
removing biases in Hi-C data via Poisson regression. Bioinformatics
28:3131-3

Yaffe E,Tanay A (2011) Probabilistic modeling of Hi-C contact maps
eliminates systematic biases to characterize global chromosomal
architecture. Nat Genet 43:1059-1065.
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