
ChIP-seq

Peter N.
Robinson

Gene
Regulatory
Networks

ChIP-Seq

XSET

FDR

MACS

Q/C & IDR

Big Picture

ChIP-seq
Peak Calling

Peter N. Robinson

Institut für Medizinische Genetik und Humangenetik
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Gene Regulatory Networks

A genetic regulatory network (GRN) is a collection of genes
which interact with each other indirectly (through their RNA
and protein expression products) and with other substances in
the cell, thereby governing the rates at which genes in the net-
work are transcribed into mRNA, thereby mediating biological
function.
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Gene Regulation

Genes are transcribed by RNA Polymerase II, but binding by
more or less specific transcription factors is required to initialize
this process
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Gene Regulation

The following somewhat oversimplified cartoon illustrates the
phenomenon of gene regulation by a specific regulatory protein
(transcription factor), without which transcription does not oc-
cur.
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Gene Regulation

Proteins bind to DNA at more or less specific sequences, so
called binding motifs. Genes that are regulated by a given tran-
scription factor often have one or more DNA binding motifs for
the protein within their promoter sequence or other regulatory
sequences.

De Silva EK et al (2008) Specific DNA-binding by apicomplexan AP2 transcription factors. PNAS

105:8393-8.
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Gene Regulation

However, most DNA binding proteins do not have extremely
specific binding motifs
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Gene Regulation

To understand gene regulation and gene regulatory
networks, we want to know all of the sites in the genome
to which transcription factors bind under different
conditions1

Because of the non-specificity of binding of transcription
factors, a purely sequence-based approach to predicting
transcription factor binding sites (TFBS) simply does not
work well at all.

Therefore, an experimental methodology has been
developed that combines next-generation sequencing and
chromatin immunoprecipitation.

1
There are at least 1391 characterized transcription factors in the human genome- Vaquerizas JM et al

(2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet

10:252-63.
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ChIP-Seq

Chromatin Immunoprecipitation following by next generation
sequencing (ChIP-seq) is used to analyze protein interactions
with DNA.

Three basic steps:

1 covalent cross-links between proteins and DNA are
formed, typically by treating cells with formaldehyde

2 an antibody specific to the protein of interest is used to
selectively coimmunoprecipitate the protein-bound DNA
fragments that were covalently cross-linked.

3 the immunoprecipitated protein-DNA links are reversed
and the recovered DNA is assayed to determine the
sequences bound by that protein
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ChIP-Seq: Workflow

Elaine R Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nature Methods 4:613–614
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ChIP-Seq: Workflow

DNA fragments from a chromatin immunoprecipitation exper-
iment are sequenced from the 5’ end.

With ChIP-seq, the alignment
of the reads to the genome
results in two peaks (one on
each strand) that flank the
binding location of the protein
or nucleosome of interest.
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ChIP-Seq: Workflow

Most experimental protocols involve a control sample that is
processed the same way as the test sample except that no spe-
cific antibody is used to enrich the bound protein. This serves
to be able to calculate the background distribution.
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XSET: A simple algorithm

To set the stage, we will explain a simple algorithm from one
of the very first ChIP-seq papers from 2007.

The methodology involves a relatively simple scheme to
calculate peak depth in ChIP-Seq experiments.

Robertson G et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin

immunoprecipitation and massively parallel sequencing Nature Methods 4:651–657.
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XSET: A simple algorithm

We start with single-end tags (SET), typically very short
e.g., 36 bp. Note fragments are sequenced from their 5’
end in 5’ to 3’ direction only!
In a typical ChIP-Seq experiment, we will have 20 to 50
million reads that are mapped to the genome using
“standard” methodologies
The SETs are “computationally extended” in the 3’
direction (e.g., 174-bp) into an extended SET (XSET).
XSET length is chosen to be the mean fragment length of
the size selected DNA.

POI
SET

XSET
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XSET: Overlap profiles

XSET overlap profiles are then calculated by counting the num-
ber of XSETs that are aligned to any given position of the
genome.

But how do we know whether any given peak is enriched?
How do we know what is statistically significant?
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False Discovery Rate

XSET employs the notion of False Discovery Rate (FDR) to
estimate the significance of ChIP-Seq peaks. We will review
the salient concepts.

The scenario:

We want to simultaneously test m null hypotheses
H1, . . . ,Hm at level α, giving p-values pi

Each hypothesis (in the current case) represents a
candidate ChIP-Seq peak (transcription factor binding
event), and the null hypothesis is that there is no true
binding.

m0 of these hypotheses are truly null (no effect)
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False Discovery Rate

Assume we are talking about a testing procedure based on p-
values, and let us consider the rejection region Γ.

The scenario:

Let R be the number of rejections (p-value lower than
significance threshold)

Let V be the number of rejections of truly null hypotheses
(false positive rejections)

Intuitively, we would like to define FDR = V
R , i.e., the

proportion of false positive rejections amongst all
rejections.

We will not go into this topic in detail here2

2
See especially various writings by Storey for more about FDR.
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XSET: FDR

XSET uses an empirical procedure to provide an estimate of
the FDR based on the characteristics of the data

Randomly place the same number of reads as in the real
data onto the genome

Each random read is defined to have the XSET length

Calculate the random expectation for the probability of
observing peaks with a particular height, taking
mapability into account
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Mappability

Not all reads can be mapped uniquely to the genome. Map-
pability of a sequence of length n relates to the uniqueness
(or not) of a sequence of length n that starts at a particular
position of the genome. If there is another identical sequence
somewhere else, then the n-mer sequence is not mappable.

Scale
chr15:

1 kb hg18
46,608,500 46,609,000 46,609,500 46,610,000 46,610,500

Mapability - ENCODE Duke Uniqueness of 35bp sequences

Mapability - ENCODE UMass Uniqueness at 15bp

UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

RefSeq Genes

Placental Mammal Basewise Conservation by PhyloP

FBN1

FBN1

Duke Uniq 35
1 _

0 _

Umass Uniq 15
0.55 _

0.1 _

Mappability: The uniqueness of a stretch of DNA sequence compared with a whole-genome sequence. Short

sequence reads can be confidently mapped to unique sequence, but less confidently mapped to sequence that

occurs multiple times in a genome. Mappability increases substantially with read length
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XSET: FDR

It is easy to show that 27-bp reads can be mapped
uniquely to ∼ 90% of the human genome

Therefore, the background simulations for XSET for reads
of 27bp uses a mappable genome length that was 90% of
3.08 Gb.

For a given peak height, one can estimate the FDR as the
number of peaks found in the randomized data (these are
by definition false positive) to the number of peaks that
were actually observed (these are presumably not all true
positives, but seem a reasonable estimate thereof)
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XSET: FDR

Relationship between the peak height threshold (number of
XSETs that are aligned across a peak) and the estimated FDR
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XSET: FDR

For each profile, we chose a threshold peak height as the small-
est height that was equivalent to FDR < 0.001 for peaks of that
height. All peaks of at least this height were retained in the
profile.

For the random data we can calculate a global coverage
level as

λ =
`× N

G ∗

Here, ` is the length of the XSETs (174bp in our
example), N is the number of XSETs in the ChIP-Seq
experiment, and G ∗ is the mapability-adjusted genome
size (for 27bp reads, 0.9× 3.08 Gb)
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XSET: FDR

Given a λ value calculated as above, the probability of
observing a peak with a height of at least h is given by a
sum of Poisson probabilities as:

P(H ≥ h) =
∞∑
k=h

e−λλk

k!
= 1−

h−1∑
k=0

e−λλk

k!
(1)
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Stat1 and Interferon

Let us now look at a typical ChIP-Seq experiment. Stat1 is a
transcription factor that can be activated by stimulation of cells
by interferon-γ. Thus, by performing one experiment before
and one after interferon-γ stimulation, comparison of the peaks
indicates the biological effect due to the stimulation.
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Stat1 and Interferon

FDR-thresholded XSET profiles and peaks (the significance
threshold was estimated at λ = 11). Stimulated and unstimu-
lated FDR-thresholded XSET profiles for the 247 Mb chromo-
some 1
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Stat1 and Interferon

The set of peaks and their location then form the basis for bi-
ological interpretation of the actions of the transcription factor
being investigated.

Parameter stimulated unstimulated

peak height at FDR threshold 11 11
Number of peaks 41,582 11,004
Average height 29.2 21.0
Median height 16 13

STAT1 motif inferred from
sequences at peaks
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MACS

We will now present Model-based Analysis of ChIP-Seq
data (MACS), which has been one of the most commonly
used peak finders. MACS introduced a more sophisticated way
of modeling the fragment size.

Clearly, the estimation of the fragment size is critical to
the performance of an algorithm such as XSET: The larger
the fragment size, the higher the average coverage of the
genome is, which has a direct influence on the calculation
of the estimated significance threshold

Zhang Y (2008) Model-based Analysis of ChIP-Seq (MACS) Genome Biology 9:R137
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MACS Bimodal enrichment

Since ChIP-DNA fragments are equally likely to be sequenced
from both ends, the tag density around a true binding site
should show a bimodal enrichment pattern

Watson strand tags enriched upstream of binding and
Crick strand tags enriched downstream.

Tags are often shifted/extended towards the 3’ direction
to better represent the precise protein-DNA interaction
site (as with XSETs). The size of the shift is, however,
often unknown to the experimenter.
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MACS Bimodal enrichment

The 5’ to 3’ sequencing requirement and short read length
produce stranded bias in tag distribution.

The separation between peaks (d) corresponds to the average sequenced fragment length.

Wilbanks EG (2010) Evaluation of Algorithm Performance in ChIP-Seq Peak Detection PLoS ONE 5:e11471.
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ChIP-seq Fragment Length

Why does the separation between peaks (d) correspond to
the average sequenced fragment length?
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Recall: Library Prep: Fragmentation

Most Illumina protocols require that DNA is fragmented
to less than 800 nt.

Ideally, fragments have uniform size

Sonication uses ultrasound waves in solution to shear
DNA.

Ultrasound waves pass through the sample, expanding and
contracting liquid, creating “bubbles” in a process called
cavitation.

Bubbles ⇒ focused shearing forces ⇒ fragment the DNA

Sketch of sonication in
“Eppi”

Source: Bioruptor

(http://www.diagenode.com/)
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ChIP-seq Fragment Length

POI

d

The blue box shows the region of the fragment that actually is sequenced (often 36bp). The entire fragment

is longer, with the exact size depending on the experimental fragmentation protocol. On average, the protein

of interest (POI) is located in the middle of the fragment, so that the average distance between reads

corresponds to the average fragment length
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MACS: Estimation of fragment size

Given a sonication size (bandwidth) and a high-confidence
fold-enrichment (mfold), MACS slides windows of length 2 ×
bandwidth across the genome to find regions with tags more
than mfold enriched relative to a random tag genome distribu-
tion

bandwidth and mfold are user parameters

mfold specifies an interval of high-confidence enrichment ratio against the background on which to

build the model. The default value 10, 30 means that a model will be built on the basis of regions

having read counts that are 10- to 30-fold of the background.

bandwidth, which is half of the sliding window size used in the model-building step, is set according

to the length of the fragments expected experimentally from the sonication procedure
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MACS: Shift size

Algorithm 1 Estimate Fragment Size

1: Slide a window of 2× bandwidth3 across genome

2: Identify regions of moderate enrichment (mfold:

10-30 fold)

3: for each peak i of 1000 randomly chosen enriched regions
do

4: separate reads into + and - strand

5: Calculate mode of + and - summit

6: di ← |mode+ −mode−|
7: end for
8: d ← averagei (di )

Thus, the distance between bimodal summits is assumed
to be the the estimated DNA fragment size d

3
roughly twice the size of the sheared chromatinacross the genome
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MACS: Shift size
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MACS: Shift size

Once d has been estimated, all reads are shifted by d/2 to their
3’ end, i.e., towards the center of the overall peak.

A statistical test is then used to determine significant
peaks

A dynamic λlocal is defined to capture local biases in the
genome.
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ChIP-Seq: Background bias

Similar to the situation with read-depth analysis in genome
sequencing, local characteristics of the genome can lead to a
bias in the number of reads being mapped.

chromatin state (e.g. euchromatin fragments easier than
silenced chromatin)

GC content

Therefore, ChIP-Seq experiments often include a control
sample, consisting of the he input material of the ChIP
processed with an unspecific immunoprecipitation with
”generic” (i.e., mixed) IgG
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ChIP-Seq: Background bias

Similar to the situation with read-depth analysis in genome
sequencing, local characteristics of the genome can lead to a
bias in the number of reads being mapped.

The tag count in ChIP versus control in 10 kb windows across the genome. Each dot represents a 10 kb

window; red dots are windows containing ChIP peaks and black dots are windows containing control peaks
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MACS: Peak calling

Because of these biases, instead of using a uniform λBG
estimated from the whole genome, MACS uses a dynamic
parameter, λlocal , defined for each candidate peak as:

λlocal = max(λBG , λ1k , λ5k , λ10k) (2)

λBG is calculated over the entire genome, and
λ1k , λ5k , λ10k are calculated from the 1 kb, 5 kb or 10 kb
window centered at the peak location in the control
sample.
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MACS: Peak calling

λlocal reduces the influence of local biases, and is robust against
occasional low tag counts at small local regions. MACS uses
λlocal to calculate the p-value of each candidate peak.

Candidate peaks with p-values below a user-defined
threshold p-value (default 10−5) are called (Poisson
distribution)

The ratio between the ChIP-Seq tag count and λlocal is
reported as the fold enrichment.
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ChIP-Seq: Artifacts

It may also be useful to filter
out certain classes of peaks
that are likely to be artifacts

Peaks with many reads
starting from the same
position

Peaks with reads mainly
from only one strand

Pepke S et al. (2009) Computation for ChIP-seq and

RNA-seq studies Nature Methods 6:S22–S32
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ChIP-Seq: An unsolved problem

ChIP-Seq programs report different numbers of peaks, when
run with their default or recommended settings on the same
dataset.

Wilbanks EG (2010) Evaluation of Algorithm Performance in ChIP-Seq Peak Detection PLoS ONE 5:e11471.
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ChIP-Seq: Quality Control

In real life, there are innumerable ways that experiments can go
wrong, and an essential part of bioinformatics is quality control
of genomics data.

Essential Q/C parameters

Biological reproducibility

Enrichment factor of immunoprecipitation

Size and uniformity of fragmentation

Library size and read count

PHRED quality profile of reads

weird stuff that nobody understands . . .
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ChIP-Seq: Quality Control

We will discuss a few bioinformatic Q/C measures from
Landt SG et al. (2012) ChIP-seq guidelines and practices of the ENCODE and

modENCODE consortia. Genome Res 22:1813-31.
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ChIP-Seq: Why do we need Q/C?

Lanes contain nuclear extract from GM12878 cells (G) and
K562 cells (K). Arrows indicate band of expected size of
133 kDa for transcription factor SIN3B.

The primary reactive band should contain at least 50% of
the signal and ideally correspond to the expected size of
the protein

A number of other wetlab Q/C measures are discussed in the paper
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ChIP-Seq: Experimental Planning

A practical goal is to maximize site discovery by optimizing
immunoprecipitation and sequencing deeply, within reasonable
expense constraints.

Different TFs and enhancer sequences have different
binding affinities, so it is not possible to provide a one-size
for all recommendation for sequencing depth, but for
mammals, each replicate should generally have at least 10
million mappable reads.

Library complexity: are there a lot of duplicate reads?
Obviously, the deeper one sequences, the more likely it is
to obtain duplicate reads, but an elevated number of
duplicates (i.e., low library complexity) can indicate that
too little DNA was isolated by immunoprecipitation or
that there were problems with library construction
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ChIP-Seq: Library complexity
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NRF: Nonredundant fraction

A useful complexity metric is the fraction of nonredundant
mapped reads in a data set (nonredundant fraction or NRF),
which we define as the ratio between the number of positions
in the genome that uniquely mappable reads map to and the
total number of uniquely mappable reads.

NRF =
#unique start positions of uniquely mappable reads

#uniquely mappable reads
(3)

Note that NRF decreases with sequencing depth,

ENCODE recommends target of NRF ≥ 0.8 for 10 million
uniquely mapped reads
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Measuring global ChIP enrichment (FRiP)

Typically, a minority of reads in ChIP-seq experiments occur in
significantly enriched genomic regions (i.e., peaks); the remain-
der of the read represents background. The fraction of reads
falling within peak regions is therefore a useful and simple first-
cut metric for the success of the immunoprecipitation, and is
called FRiP (fraction of reads in peaks).

Most (787 of 1052) ENCODE data sets have a FRiP enrichment of 1% or more when peaks are
called using MACS with default parameters.

There is a rough correlation with the number of peaks called
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Cross-correlation analysis

High-quality ChIP-seq experiment produces significant cluster-
ing of enriched DNA sequence tags at locations bound by the
protein of interest, and that the sequence tag density accu-
mulates on forward and reverse strands centered around the
binding site.

“true signal” sequence tags are
positioned at a distance k from
the binding site center that
depends on the fragment size
distribution

A control experiment lacks this
pattern of shifted stranded tag
densities
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Cross-correlation analysis

Reads are shifted in the direction of the strand they map to by an
increasing number of base pairs and the Pearson correlation between the
per-position read count vectors for each strand is calculated.

This typically produces two peaks when cross-correlation is plotted against
the shift value: a peak of enrichment corresponding to the predominant
fragment length and a peak corresponding to the read length (“phantom”
peak)
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Cross-correlation analysis

The normalized ratio between the fragment-length cross-correlation peak
and the background cross-correlation (normalized strand coefficient, NSC)
and the ratio between the fragment-length peak and the read-length peak
(relative strand correlation, RSC), are strong metrics for assessing
signal-to-noise ratios in a ChIP-seq experiment.

ENCODE cutoff: NSC values < 1.05 and RSC values < 0.8
(repeat / reject experiments with these NSC/RSC values)
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ChIP-seq: Biological replicates

Stuff happens: Sometimes the wetlab experiment simply doesn’t work. Bioinformatics analysis needs to

recognize this and warn the experimentalists: Garbage in garbage out!
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Consistency of replicates: Analysis using IDR

Definition (IDR)

The irreproducible discovery rate (IDR) is a unified approach to
measure the reproducibility of findings identified from replicate
high-throughput experiments

The scenario: We have two ChIP-seq experiments and
have called peaks for each separately of them using MACS
or some other tool

Thus, each peak in each experiment has been assigned a
p-value
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Consistency of replicates: Analysis using IDR

Each list of peaks is ranked according to p-value

The IDR method then fits the bivariate rank distributions
over the replicates in order to separate signal from noise
based on a defined confidence of rank consistency and
reproducibility of identifications

We will not cover the details of the method, which was presented in Li Q (2011) Measuring

reproducibility of high-throughput experiments. Ann Appl Stat 5:1752–1779.
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IDR: Good Quality

Scatter plots of signal scores of peaks that overlap in each pair of replicates.

Note that low ranks correspond to high signal and vice versa.

Black data points represent pairs of peaks that pass an IDR threshold of 1%, whereas the red data
points represent pairs of peaks that do not pass the IDR threshold of 1%.

The RAD21 replicates show high reproducibility with ∼30,000 peaks passing an IDR threshold of 1%
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IDR: Good Quality

The SPT20 replicates show poor reproducibility with only six peaks passing the 1% IDR threshold
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The Big Picture: Using ChIP-seq to answer
biological questions

Transcription in eukaryotes involves interactions between multi-
protein complexes and chromosomal DNA to coordinately regu-
late gene expression in a stimulus-specific, temporal, and tissue-
specific fashion

ChIP-seq is one of the most important genomics methodologies to
investigate gene regulation

We will present a bird’s eye view of a nice paper on the subject: Stender JD
et al (2010) Genome-wide analysis of estrogen receptor alpha DNA binding
and tethering mechanisms identifies Runx1 as a novel tethering factor in
receptor-mediated transcriptional activation. Mol Cell Biol 30:3943-55.
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Multiprotein complexes are important for
regulation

Transcription factors have the
ability to regulate gene
expression by binding directly to
DNA at sequence-specific
response elements or by
tethering to other response
elements through protein-protein
interactions with other
DNA-bound factors

The combinatorial usage of these
response elements drives the
regulation of target genes and
ultimately determines stimulus
and tissue specificity.
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Estrogen Receptor

Estrogen receptor alpha (ERα), a member of the nuclear hormone receptor
family, is a ligand-activated transcription factor that controls the expression
of hundreds of genes

Two regulatory mechanisms
– Direct binding to DNA at estrogen response elements (EREs) through its zinc finger-containing

DNA binding domain

– Protein-protein interactions with other direct DNA binding transcription factors,
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Estrogen Receptor Element: ERE

The Estrogen Receptor Element (ERE) is a DNA motif to which
the estrogen receptor α (ERα) can bind.
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Estrogen Receptor

The authors Stender et al. examine the genome-wide
chromatin localization of a mutant nuclear hormone
receptor, one in which point mutations in the DNA
binding domain disable the receptor’s ability to bind to its
palindromic DNA response element.

Thus, they have a molecular system to distinguish between
direct DNA-binding and protein-protein interactions with
indirect DNA binding
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Mutant Estrogen Receptor Construct

The estrogen receptor DNA binding domain mutant selectively
activates ERE binding-independent estrogen signaling.
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WT vs. mutant ER: Effects on gene
expression

MDA-MB-231 cells stably expressing either the WT ER or DB-
Dmut ER. Upregulated genes are shown in red, and genes down-
regulated by E2 are shown in green

Hierarchical clustering of these E2-regulated genes

using the microarray expression data from the WT or

DBDmut ER-expressing cells segregated the

E2-regulated genes into two major classes: (i) genes

that were regulated only by the WT ER (Fig. 2A) and

(ii) genes that were regulated by both the WT ER and

DBDmut ER (Fig. 2B).
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WT vs. mutant ER: ChIP-seq

Peaks preferential for WT ER recruitment (n = 6,019) are denoted in red,
while peaks common for both WT ER and DBDmut ER (n = 451) are
blue. Peaks unique for the DBDmut ER (n = 662) are shown in yellow.

The DBDmut colocalized to only 451 (7%) (blue dots) of the 6470 WT

binding peaks (red dots plus blue dots), which indicates that the majority

of ER recruitment to ER binding sites requires a fully functional DNA

binding domain
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WT vs. mutant ER: DNA binding motifs

The DNA sequences corresponding to direct ER binding sites were searched
for enriched motif sequences

The ERE was the most enriched motif for WT ER (as expected)

The tethered binding sites were investigated while using direct WT ER

binding sites as a background set. In contrast to direct binding sites, the

most enriched motifs for the tethering sites included Ap1, Runx, and HRE
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WT vs. mutant ER: DNA binding motifs

The Ap1 motif was present in 37% of the binding sites of the DBDmut ER,
while being present in only 16% of the WT ER DNA binding sites

In addition, the Runx motif was present in 20% of DBDmut sites, while
only 7% of the WT ER binding sites contained a Runx motif.

These data suggest that members of the Ap1 and the Runx families may

be potential candidate tethering factors involved in mediating

ERα-dependent gene regulation.
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Runx1 is a cofactor of ER

The observation that the Runx motif was specifically enriched
in a subset of ER tethering sites suggested the possibility that
Runx1 might bind to and serve as a tethering protein for ERα
at distinct chromosomal locations.

Cells were treated with vehicle (i.e., negative control) or 10 nM E2 for 45
min prior to immunoprecipitation with Runx1 antibody or IgG followed by
Western immunoblotting for ERα.

The fact that immunoprecipitation by a Runx1 antibody shows a signal, but

that with IgG (also a negative control) does not indicates a binding

interaction between Runx1 and ERα.
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Elegant Genomics!

The paper I just presented has all of the hallmarks of an elegant
genomics experiment!

The experiment begins with an hypothesis

The experimental design involves a global search or
investigation4

The experiment involves several interventions that allow
genomic scale effects to be evaluated with at least some
degree of specificity (ERα wildtype vs. mutant construct,
stimulation by oestrogen vs. vehicle)

Comprehensive and integrated bioinformatics analysis that
is informed by the biological question

The results of bioinformatics analysis lead to a targeted
molecular experiment that validated the results of the
bioinformatic analysis

4
otherwise it wouldn’t really be genomics . . .
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Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading
Park PJ. ChIP-seq: advantages and challenges of a maturing technology
(2009) Nat Rev Genet 10:669-80. ⇒ excellent review

Ibrahim DM, Hansen P, Rödelsperger C, Stiege AC, Doelken SC, Horn D,
Jäger M, Janetzki C, Krawitz P, Leschik G, Wagner F, Scheuer T,
Schmidt-von Kegler M, Seemann P, Timmermann B, Robinson PN,
Mundlos S, Hecht J (2013) Distinct global shifts in genomic binding
profiles of limb malformation-associated HOXD13 mutations. Genome Res
23:2091-102. ⇒ We use ChIP-seq to investigate the pathogenesis of
mutations in the transcription factor HOXD13
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