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The ultimate goal of ChIP-seq experiments is to measure
genome wide DNA binding of transcription factors or other pro-
teins in order to understand gene regulatory networks. In par-
ticular, we want to understand the relationship between DNA-
protein binding and transcription.

This requires integrative genomics analysis of multiple
data sources.

ChIP-seq
RNA-seq
in many cases, epigenetics (DNA-methylation, histone,
3-dimensional chromosomal conformation, etc)
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Sit back and enjoy

Today, we will talk about an integrated analysis of genomics
data on many levels. Sit back and enjoy!

How to Do Good Bioinformatics for Genomics

1 Read mapping

2 Make calls about basic data (variants,
isoforms, differential expression,
structural variants, ChIP-seq peaks)

3 Integrative bioinformatics (and wetlab
experiments) to answer important
questions about biology or medicine!

We have not yet covered (3) in this course, but it will be your challenge for the next decade!
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Today, we will examine the paper Ouyang Z, Zhou Q,
Wong WG (2009) ChIP-Seq of transcription factors
predicts absolute and differential gene expression in
embryonic stem cells. PNAS 106:21251-21526

We will need to review some material from linear algebra
including Principle component analysis (& SVD) before we
examine the paper.
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1 Eigenvalues and Eigenvectors

2 Symmetric Matrices

3 Back to Gene Regulation

4 Principle Component Analysis (PCA)

5 Getting back again to gene regulation
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Linear algebra: quick review

Recall that matrix multiplication can be viewed as a linear
mapping, for instance, the matrix A induces a
counterclockwise 90°rotation

v =
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Linear algebra: quick review

Similarly, the matrix C induces a counterclockwise
rotation by and angle of θ = π

6 =30°and A induces a
reflection about the Y axis.

Cv =

[
cos θ − sin θ
sin θ cos θ

] [
1
0

]

=

[
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2

√
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]
(1)
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Eigenvalues and eigenvectors

Av =

[
2 −1
0 1

] [
1
0

]
=

[
2
0

]
but Aw =

[
2 −1
0 1

] [
0
1

]
=

[
−1
1

]
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λ = 2

Here, v is an eigenvector of A with eigenvalue 21, but w
is not an eigenvector of A

1
Corresponding to a “stretch” by a factor of 2.
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Eigenvalues and eigenvectors

Definition (eigenpair)

Recall that if A is an n × n matrix, then x and λ are an
eigenvector/eigenvalue pair for A if

Ax = λx ,

then we say that λ is an eigenvalue of A and that x is the
corresponding eigenvector.

Many texts refer to the eigenvector as ξ, i.e., Aξ = λξ
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Eigenvalues and eigenvectors

One of the major uses for eigenanalysis is to decouple equations,
which is related to the purpose of PCA/SVD. Therefore, we will
finish this linear algebra review with an example of decoupling
equations.

Consider a population of owls and rabbits
The rabbits breed like mad, but the more rabbits there are,
the more the owls have to eat
If the owls eat more, there will be more owls next year,
which will then eat more rabbits
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Eigenvalues and eigenvectors

We will use x1(n) to describe the population of owls (in
hundreds) in year n, and x2(n) to describe that of rabbits (in
thousands). We thus have a system of coupled equations.

x1(n) = a11x1(n − 1) + a12x2(n − 1)

x2(n) = a21x1(n − 1) + a22x2(n − 1)

where a11, a12, and a22 are positive constants and a21 is a
negative constant (the more owls in year n − 1, the fewer
rabbits in year n). This can be written as

x(n) = Ax(n − 1) with A =

[
a11 a12

a21 a22

]
and x(n) =

[
x1(n)
x2(n)

]
(2)
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Eigenvalues and eigenvectors

Let us use the example

A =

[
0.4 0.6
−0.3 1.3

]
(3)

Thus, in year n, there will be
x1(n) = 0.4x1(n − 1) + 0.6x2(n − 1) owls

i.e., the more owls and the more rabbits there are in year n − 1, the

more there will be in year n.

On the other hand, there will be
x2(n) = −0.3x1(n − 1) + 1.3x2(n − 1) rabbits

i.e., the more owls there are in year n − 1, the less rabbits there will

be in year n, but the more rabbits there are in year n − 1, the more

there will be in year n.
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Eigenvalues and eigenvectors

Therefore, we get for the development of the owl and
rabbit populations from year n − 1 to n.[
x1(n)
x2(n)

]
= A

[
x1(n − 1)
x2(n − 1)

]
=

[
0.4 0.6
−0.3 1.3

] [
x1(n − 1)
x2(n − 1)

]
(4)

In general, for the development of the populations starting
from some initial conditions x(0), we have[

x1(n)
x2(n)

]
= An

[
x1(0)
x2(0)

]
(5)

But how do we solve this kind of coupled equation?
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We will not explain how to find eigenvalues/eigenvectors, which
is standard material. Practically speaking, it is important to
understand the concepts of when and why to use eigenpairs,
and for larger matrices, software such as matlab or R is used
to solve for the eigenvalues and eigenvectors

The matrix A =

[
0.4 0.6
−0.3 1.3

]
has the following eigenpairs

[
0.4 0.6
−0.3 1.3

] [
1
1

]
=

[
1
1

]
= 1︸︷︷︸

λ1

[
1
1

]
[

0.4 0.6
−0.3 1.3

] [
2
1

]
=

[
1.4
0.7

]
= 0.7︸︷︷︸

λ2

[
2
1

]
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Eigenvalues and eigenvectors

A square matrix A is called diagonalizable if there exists an
invertible matrix P such that D = P−1AP is a diagonal ma-
trix.

Theorem

An n × n matrix A has n linearly independent eigenvectors if
and only if it can be written as A = PDP−1, where D is a
diagonal matrix. In that case, the diagonal entries of D are the
eigenvalues of A and the eigenvectors of A are the columns of
P.
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Eigenvalues and eigenvectors

For example, using the eigenvalues and eigenvectors of our
owls and rabbits matrix, we see that

A = PDP−1

or [
0.4 0.6
−0.3 1.3

]
=

[
1 2
1 1

] [
1 0
0 0.7

] [
−1 1
1 −1

]
In matlab or octave, this corresponds to the following code

octave:37> P=[1 2;1 1];

octave:38> D=[1 0;0 0.7];

octave:39> P*D*inv(P)

ans =

0.40000 0.60000

-0.30000 1.30000
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Eigenvalues and eigenvectors

Let us see how we can use this to solve problems in our
owl/rabbit example

We have
x(n) = Ax(n − 1) (6)

Since the eigenvectors b1 and b2 are a basis for R2, we can
express x as a linear combination of the eigenvectors

x(n) = α1(n)b1 + α2(n)b2

for some coefficients α1(n) and α2(n), and analogously

x(n − 1) = α1(n − 1)b1 + α2(n − 1)b2
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Eigenvalues and eigenvectors

We can now re-express equation (6) in this basis

α1(n)b1 + α2(n)b2 = Aα1(n − 1)b1 + Aα2(n − 1)b2

= α1(n − 1)Ab1 + α2(n − 1)Ab2

= α1(n − 1)λ1b1 + α2(n − 1)λ2b2

where the last step follows because of Ax = λx . Therefore, we
have

αi (n) = λiαi (n − 1)

and thus
x(n) =

∑
i

λiαi (n − 1)bi
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Eigenvalues and eigenvectors

Let us now return the problem of solving the following
equation [

x1(n)
x2(n)

]
= An

[
x1(0)
x2(0)

]
(7)

Recalling that A = PDP−1, we conclude

An = PDP−1PDP−1 . . .PDP−1︸ ︷︷ ︸
n times

and thus2

An = P DD . . .D︸ ︷︷ ︸
n times

P−1 = PDnP−1 (8)

which leads to
x(n) =

∑
i

λni αi (0)bi

2
because PP−1 = I .
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Eigenvalues and eigenvectors

Let’s say we start with 200 owls (recall that x1 was in units
of hundreds, so we have x1 = 2) and 3000 rabbits (recall
that x2 was in units of thousands, so we have x2 = 3).

Then we have that X (0) =

[
2
3

]
. This initial condition now

allows us to solve for the coefficients at year zero

x(0) =

[
2
3

]
= α1(0)

[
1
1

]
+ α2(0)

[
2
1

]
= 4

[
1
1

]
−
[

2
1

]
We can now plug the coefficients α1(0) = 4 and
α2(0) = −1 into equation (7)

x(n) = Anx(0) = 4 (1)n
[

1
1

]
− 1 (0.7)n

[
2
1

]
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Eigenvalues and eigenvectors

Thus we have two equations

x1(n) = 4− 2(0.7)n

x2(n) = 4− (0.7)n

As n→∞, we get the limiting populations of x1(∞) = 4
(i.e., 400) owls and x2(∞) = 4 (i.e., 4000) rabbits.

Thus, expressing coupled equations using an eigenvector
basis has allowed us to decouple a system of coupled
equations.
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Symmetric real matrices

Symmetric real matrices have a number of interesting proper-
ties that allow special kinds of matrix decompositions and other
algorithms

A symmetric matrix is a square matrix that is equal to
its transpose, i.e., aij = aji for all i and j .

A =


1 2 3 4
2 e 6 9
3 6 2 π
4 9 π 1

 = AT
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Orthogonal matrices

An orthogonal matrix is a square matrix with real entries
whose columns and rows are orthogonal unit vectors:

qT
i qj = 0 for i 6= j

and
‖qi‖ = 1 ∀i

That is, the individual columns of an orthogonal matrix are orthogonal to one another and the length

of the vectors is one.

Note that a matrix Q is orthogonal if its transpose is
equal to its inverse:

QT = Q−1

this entails
QQT = QQ−1 = I
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Spectral theorem

Theorem (Spectral theorem)

Any symmetric matrix whose values are real can be
diagonalized by an orthogonal matrix. In other words, if A is a
symmetric, real-valued matrix, then there exists a real
orthogonal matrix Q such that

Λ = QTAQ

In other words, a matrix A is symmetric ⇐⇒ A has an
orthonormal basis of eigenvectors.

QΛ = QQTAQ = AQ → qiλi = Aqi
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Matrix Decompositions

The spectral theorem entails that a symmetric real-valued
matrix A can be decomposed using its eigenpairs:

A = QΛQT

Noting that the columns of Q are made up of the
eigenvectors qi , we have

A =
[
q1 q2 . . . qn

] 
λ1

λ2

. . .
λn



qT

1

qT
2

. . .
qT
n

 (9)

This implies

A = QΛQT =
n∑

i=1

λiqiq
T
i
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Back to Gene Regulation

Let us now see how these concepts can be brought to bear on
the problem of gene regulation in ChIP-seq experiments

Previous state of the art: Modeling
based on linear regression used to
predict gene expression

For instance, predicted TFBS affinity

Yg = α+
M∑

m=1

βmSmg + εg (10)

Conlon EM et al. (2003) Integrating regulatory motif discovery and

genome-wide expression analysis. PNAS 100:3339–44.
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Predicting Gene Regulation

However, thus far, the fraction of variation in gene expression
(R2) explained by TF binding has been very moderate, varying
between 9.6% and 36.9% on various datasets from yeast to
human

Potential reasons include

Insufficient data

suboptimal models

both.

The authors of Ouyang et al propose a new way to extract suitable features from

the ChIP-Seq data to serve as explanatory variables in the modeling of gene

expression. Additionally, they use SVD/PCA to better model divergent regulatory

effects of a TF that may be due to differences in the binding of cofactors and/or

the chromatin context.
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Embryonic Stem Cells

Transcriptional networks in embryonic stem cells (ESC) main-
tain self-renewal and pluripotency. Many TFs have been identi-
fied as critical in ESCs, among them Oct4, Nanog, and Sox2.
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Embryonic Stem Cells

A quantitative dissection of the functional roles of ESC regu-
lators such as Oct4, Nanog, and Sox2 is still lacking.

Goal of experiment: Use ChIP-seq data from 12 ESC
factors3 and RNA-seq data to perform an analysis of
genome-wide gene expression and TF binding data in
ESCs.

3Smad1, Stat3, Sox2, Oct4, Nanog, Esrrb, Tcfcp2l1, Klf4, Zfx, E2f1,
Myc, and Mycn
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Transcription Factor Association Strength
(TFAS)

Definition (Transcription Factor Association Strength)

The TFAS is a non-observable quantity that reflects the degree
to which a transcription factor binds to the regulatory
sequences of a gene and thereby stimulates gene expression

There are innumerable definitions of TFAS or analogous
quantities in the literature

The set of TFAS of all TFs for all Genes can be used for
example in network inference algorithms
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Binary TFAS

Traditionally, a TF binding peak is usually associated with the
nearest gene (uslly based on the distance between the midpoint
of the peak and the transcription start site (TSS).

Denoting the binary TFAS as aij , then aij = 1 if gene i is
associated with a ChIP-seq peak of TF j ; otherwise
aij = 0.

A binary TFAS is easy to calculate

The binary TFAS approach does not take into account the
intensity of the peaks and the relative distance between
peaks and genes.
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Continuous TFAS

Ouyang et al. introduce a continuous TFAS that integrates
the peak intensity and the proximity to genes to define the
association strength between a TF and a gene.

It is assumed that the association strength of TF j on
gene i is a weighted sum of intensities of all of the peaks
of TF j :

aij =
∑
k

gke
− dk

d0 (11)

In this equation,

gk is the height of the kth binding peak of the TF j

dk is the distance in nucleotides from the kth binding peak
and the TSS of gene i

d0 is a TF-specific constant (500 nt for E2f1 and 5000 nt for other TFs because

E2f1 peaks tend to be close the the TSS)



ChIP-seq

Peter N.
Robinson

eigenstuff

Symmetric
Matrices

Gene Reg.

PCA

Gene Reg.

Continuous TFAS

When dk
d0

is very large the contribution of the peak will be
effectively zero.

Therefore, the summation is taken over peaks that are not
too far away from the TSS (e.g., ≤ 1× 106 nucleotides)

The TFAS values are then log-transformed4 and quantile
normalized5

For N genes and M TFs, the TFAS profiles are stored in
an N ×M matrix A.

4
i.e., a

′
ij = log aij

5
i.e., the a

′
ij are sorted; then, the same number of samples from the reference distribution

(e.g., Gaussian) are taken from the cumulative distribution function, and the a
′
ij are assigned

the values of the reference distribution.
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Continuous TFAS

Illustration of the binding peaks of E2f1 around three genes.
The vertical axis represents the amplitude of the ChIP-Seq sig-
nals.

Zpf42: TFAS=324

Tfpi: TFAS=19.3

Hhip: TFAS=0.1

Note that binary TFAS would have assigned a “1” to all
three binding events
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Continuous TFAS

The continuous TFAS was the first major new idea of the
paper.

The authors now validate the utility of continuous TFAS
by comparing its performance to that of binary TFAS

They use a principle-components analysis (PCA)
regression model to compare the ability of the binding
peaks of the 12 ESC transcription factors with respect to
their ability to predict the expression of genes in ESCs (as
measured by RNA-seq).

By examining the quality of the respective regression
models, we can determine which method performed best

To understand this, we will have to review PCA, and how
all of this is used to perform regression.
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PCA: Intuition, Goals, Algorithm

We will now present an explanation of the PCA algorithm that
is closely based on the document A Tutorial on Principal Com-
ponent Analysis by Jonathon Shlensa

a
Available at http://www.snl.salk.edu/ shlens/

PCA uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal
components (PC). The first PC accounts for as much of
the variability in the data as possible, and each succeeding
PC accounts for as much of the remaining variability as
possible.

An extremely important tool in the repertoire of
algorithms for data analysis in bioinformatics
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PCA: Intuition, Goals, Algorithm

A common problem in bioinformatics

We are trying to understand a complicated biological
experiment with lots of genomics data that comes from
multiple sources (e.g., ChIP-seq from 12 TFs, RNA-seq data),
is noisy, and is partially redundant

We want to understand the essential patterns in the data

We will demonstrate this using a slightly simpler example,
and then explain the relevance to the ESC experiment
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The clueless physicist

Let us imagine we are studying the motion of an ideal spring,
consisting of a ball attached to a massless, frictionless spring.
The ball is released a small distance away from equilibrium;
because it is an ideal spring, it should oscillate indefinitely along
its axis of motion.



ChIP-seq

Peter N.
Robinson

eigenstuff

Symmetric
Matrices

Gene Reg.

PCA

Gene Reg.

The clueless physicist

Graphic: Jonathon Shlens

Let’s say we want to determine the motion of the spring as
a function of time

We therefore place three movie cameras around the spring
and record images at 120 Hz
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The clueless physicist

Our goal: get to a simple equation that will describe the
dynamics of the system in terms of a single variable x

But how do we get from our data from the three cameras
to this equation?

In the real world, we do not know which which
measurements best reflect the dynamics of the system in
question6

Also, there is typically an (unknown) amount of noise in
any experimental system that will make our task of
recognizing patterns in the data even harder. For instance,
friction or poorly focused cameras might interfere with the
experiment with the spring

6
e.g., e do not know a priori which, if any, of the 12 ESC transcription factors will affect the expression

of any of the 20,000 genes measured by RNA-seq.
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The goals of PCA

Intuitively, the goal of PCA is to identify the most meaning-
ful basis with which to re-express a dataset, in the hope that
the new basis will (1) filter out noise and (2) reveal hidden
structure.

Let us continue with our example of the spring
Clearly, we hope that the method will determine that x̂ ,
i.e., the unit basis vector along the x axis, is the important
dimension (rather than the clueless axes defined by the three cameras)

Graphic: Jonathon Shlens
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The clueless physicist

Now let us see how to use PCA to help us understand the data.
Each of the three cameras A, B, and C takes a measurement
of the 2-dimensional projection of the ball 120 times a second.
For instance, camera A records xA and yA.

One sample (one data measurement) consists of the data
from all three cameras

x =



xA
yA
xB
yB
xC
yC



Thus, if we record the ball’s
position for 100 seconds, we will
have 100× 120 = 12, 000 of these
vectors

In our ESC example, we essentially
have a vector of 12 data points
from the ChIP-seq experiments,
and we have 20,000 such vectors,
one for each gene.
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The naive basis

Let us for the moment concentrate on the data sampled by
camera A. Each of the measurement vectors represents a linear
combination of the unit length basis vectors. The standard
naive basis would be {e1, e2} = {(1, 0), (0, 1)}.

For instance, if camera A records the position
(xA, yA) = (2, 2), this can be expressed as the linear
combination

2e1 + 2e2 = 2

[
1
0

]
+ 2

[
0
1

]
But why select this basis over another one, e.g.

2
√

2b
′
1 + 0b

′
2 = 2

√
2

[
2√
2

2√
2

]
+ 0

[
2√
2

− 2√
2

]
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The naive basis

Essentially, we use the standard naive basis of
{e1, e2} = {(1, 0), (0, 1)} because this is the way we
originally recorded our data (these are the numbers we got
out of the camera).

There is nothing special about this basis, it is just the
starting point for most data analysis

For the 6-dimensional data of the spring experiment, the naive basis can be

expressed as a matrix, each row of which is an orthonormal basis vector

B =



eT1
eT2
eT3
eT4
eT5
eT6

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I (12)
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PCA: A more useful basis?

PCA searches for a new basis that is a linear combination of
the original basis and that best re-expresses the data set.

Let X be the original dataset, where each column
represents one m-dimensional vector with a single
measurement. In the example, m = 6 measurements, and
there are n = 12, 000 measurements (one to a column).
Thus, X is a 6× 12, 000 matrix.

Now let Y be a new m × n matrix that is produced from
X by means of a linear transformation by a matrix P7

Y = PX (13)

Note of course that if P = I , then Y = X .

7
At this point, we still have not stated how to find P.
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PCA: A more useful basis?

We will define the following quantities surrounding Y = PX

pi are the rows of P.

xi are the columns of X , representing the individual
measurements

yi are the columns of Y

Note that P is a matrix that performs a linear
transformation of X into Y (rotation and stretch)
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PCA: A more useful basis?

It can be seen that the rows of P are thus a new set of basis
vectors for expressing the columns of X .

PX =

p1
...
pm

 [x1 . . . xn
]

and thus

Y =

p1 · x1 . . . p1 · xn
...

. . .
...

pm · x1 . . . pm · xn


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PCA: A more useful basis?

Column i of Y is thus the dot product of column i of X with
the corresponding rows of P:

The j th coefficient of yi is a projection of xi onto the j th

row of P.

yi =

p1 · xi
...

pm · xi


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PCA: A more useful basis?

We have left out the question of how exactly to find the ma-
trix P? The PCA procedures is based upon features that are
considered desirable for the matrix Y to exhibit, which we will
consider next.

There are two essential topics

Noise

Redundancy
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Noise

Noise is quantified relative to signal strength. A common
measure is the signal to noise ratio:

SNR =
σ2
signal

σ2
noise

In general, directions with the largest variance correspond
to the interesting signal

Here, σ2
signal is along the straight line traced out by the

spring. Any spread deviating from this line is noise,
captured here by σ2

noise
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Redundancy

If we could some how rotate the basis to align a basis
vector with the direction of maximum variance, we could
essentially capture all of the interesting signal in the spring
experiment with a single variable instead of 6

Graphic: Jonathon Shlens

In real life, data can be highly intercorrelated, and
appropriate dimensionality reduction may be not only
intuitive but also improve the performance of downstream
statistical tests.
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Covariance matrix

A covariance matrix, usually denoted Σ, generalizes the notion
of variance to multiple dimensions. Element (i , j) represents
the covariance between the i th and j th elements of a vector of
random variables.

Recall that the Variance of a random variable is defined as Var(X ) = E
[

(X − µ)2
]

e.g., for a discrete with equally probable elements, we have Var(X ) =
1

N

∑N
i=1(xi − µ)2.

The covariance for random variables that are arranged as a

column vector X =


X1
X2
. . .
Xn

 is then a n × n matrix Σ with

Σij = E[(Xi − µi )(Xj − µj)]
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Covariance matrix

Consider two row vectors:

a =
[
a1 a2 . . . an

]
and

b =
[
b1 b2 . . . bn

]
We can express their

covariance as

σ2
ab =

1

n
abT

Define a new m × n matrix X
whose rows correspond to the
measurements, and whose
columns corresponding to the
components of the centered
individual measurements (e.g.,
xA, yA). In our example, X has
10,000 rows and 6 columns.
The covariance matrix is:

CX =
1

n
XXT
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Covariance matrix

Some important points about covariance matrices

They are square symmetric matrices (clearly,

Σij = E[(Xi − µi )(Xj − µj )] = E[(Xj − µj )(Xi − µi )] = Σji )

The diagonal terms of CX represent the variance of the
individual measurement types.

The off-diagonal terms represent the covariance between
the individual measurement types.

Thus, to maximize the signal to noise ratio, we want to
have large values for the diagonal terms, and to minimize re-
dundancy we want to have small values for the off-diagonal
terms.
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PCA: The algorithm

The PCA algorithm can now be understood at a bird’s eye level
as follows:

Algorithm 1 PCA
1: Select p1, a direction in m-dimensional space

along which var(X ) is maximized.

2: Find p2 which maximizes var(X ) s.t. p1p
T
2 = 0

3: repeat
4: In iteration i, identify a vector pi that

maximizes var(X ) s.t. pip
T
j = 0 for all j < i

5: until m PCs are selected
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PCA: The algorithm

The goal of PCA is thus: Find an orthonormal matrix P with
Y = PX such that the covariance matrix of Y is a diagonal
matrix.

There are many ways of solving PCA, including SVD8

That is, we want to find a matrix P such that CY =
1

n
YY T is

diagonal. The rows of P are known as the principle
components of X .

8
Which has advantages including numerical stability over the method presented here and is often used

in practice.
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PCA: The algorithm

Goal: Find an orthonormal matrix P with Y = PX such that such that CY =
1

n
YYT is diagonal

CY =
1

n
YY T

=
1

n
(PX )(PX )T

=
1

n
PXXTPT

= P

(
1

n
XXT

)
PT

= PCXP
T

Thus, CY is related to the covariance matrix of X
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PCA: The algorithm

Recall from theorem (3) that a symmetric matrix A (such
as CX ) has an orthonormal basis of eigenvectors such at
A = QΛQT

For PCA, the trick is to select the matrix P to be a matrix

whose rows pi are the eigenvectors of CX =
1

n
XXT ,

which implies that P = QT .

CY = PCXP
T

= P(QΛQT )PT

= P(PTΛP)PT

= Λ

It is clear that our choice of P diagonalizes CY , which was
our goal for PCA!
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PCA: The algorithm

So that’s it. The PCA algorithm entails

1 Subtract the mean of each measurement type

2 Compute the eigenvectors of CX .

3 The principle components (PCs) of X are the eigenvectors

of CX =
1

n
XXT

4 The i th diagonal value of CY is the variance of X along pi .
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PCA: Application

To give intuition about the PCA, we will show how it is used
to examine and visualize a dataset about cars. Specifications
are given for 428 new vehicles for the 2004 year. The variables
recorded include price, measurements relating to the size of the
vehicle, and fuel efficiency.

Suggested Retail Price

Dealer Cost

Engine Size

Number of Cylinders

Horsepower

City Miles Per Gallon

Highway Miles Per Gallon

Weight (Pounds)

Wheel Base (inches)

Length (inches)

Width (inches)
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PCA: Application

The next several slides were adapted from a script by Cosma
Shalizi at Carnegie Mellon University9

> cars = read.csv("cars-fixed04.dat")

> head(cars[,8:18])

Retail Dealer Engine Cylinders Horsepower CityMPG

Acura 3.5 RL 43755 39014 3.5 6 225 18

Acura 3.5 RL Navigation 46100 41100 3.5 6 225 18

Acura MDX 36945 33337 3.5 6 265 17

Acura NSX S 89765 79978 3.2 6 290 17

Acura RSX 23820 21761 2.0 4 200 24

Acura TL 33195 30299 3.2 6 270 20

HighwayMPG Weight Wheelbase Length Width

Acura 3.5 RL 24 3880 115 197 72

Acura 3.5 RL Navigation 24 3893 115 197 72

Acura MDX 23 4451 106 189 77

Acura NSX S 24 3153 100 174 71

Acura RSX 31 2778 101 172 68

Acura TL 28 3575 108 186 72

9
Data file available at http://www.stat.cmu.edu/ cshalizi/490/pca/cars-fixed04.dat
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PCA: Application

There are complex correlations between different attributes of the cars. (Red: highly correlated, blue: so-so,

yellow: low correlation)
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PCA: Application

The R function prcomp performs PCA via SVD.

> cars.pca = prcomp(cars[,8:18],

scale.=TRUE)

> round(cars.pca$rotation[,1:2],2)

PC1 PC2

Retail -0.26 -0.47

Dealer -0.26 -0.47

Engine -0.35 0.02

Cylinders -0.33 -0.08

Horsepower -0.32 -0.29

CityMPG 0.31 0.00

HighwayMPG 0.31 0.01

Weight -0.34 0.17

Wheelbase -0.27 0.42

Length -0.26 0.41

Width -0.30 0.31

PC1

All the variables except the gas-mileages

have a negative projection on to the first

component. This means that there is a

negative correlation between mileage and

everything else. The first principal

component tells us about whether we are

getting a big, expensive gas-guzzling car

with a powerful engine, or whether we are

getting a small, cheap, fuel-efficient car

with a wimpy engine.
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PCA: Application

> round(cars.pca$rotation[,1:2],2)

PC1 PC2

Retail -0.26 -0.47

Dealer -0.26 -0.47

Engine -0.35 0.02

Cylinders -0.33 -0.08

Horsepower -0.32 -0.29

CityMPG 0.31 0.00

HighwayMPG 0.31 0.01

Weight -0.34 0.17

Wheelbase -0.27 0.42

Length -0.26 0.41

Width -0.30 0.31

Note: MPG=miles per gallon

PC2

Engine size and gas mileage hardly project

on to PC2 at all. Instead we have a

contrast between the physical size of the

car (positive projection) and the price and

horsepower. This axis separates mini-vans,

trucks and SUVs (big, not so expensive,

not so much horse-power) from sports-cars

(small, expensive, lots of horse-power).
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PCA: Application

Loadings Plot for PC1

Variable Loadings

Engine

Weight

Cylinders

Horsepower

Width

Wheelbase

Retail

Dealer

Length

HighwayMPG

CityMPG
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Loadings Plot for PC2

Variable Loadings
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Length
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The elements of an eigenvector are the weights pij , and
are also known as loadings10.

The figures show the loadings of p1 and p2, i.e., the coefficients representing the linear combinations

of the original variables to together make up the eigenvectors

10
loadings are called rotations in some texts
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PCA: Application

How many principles components are required to represent the
essential parts of the data? This can be estimated by a scree
plot.

> screeplot(cars.pca,main="Scree Plot",xlab="Components")

Scree Plot
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PCA: Understanding the biplot: Loadings

The biplot is often used to display the results of PCA. Biplots
show both the loadings and the scores in a single plot. Let us
first examine each component separately.

load = cars.pca$rotation

PC1 = load[order(load[,1]),1]

PC2 = load[order(load[,2]),2]

plot(PC1,PC2,pch=18,col="blue",cex.lab=1.5)

grid()

n<-length(PC1)

arrows(rep(0,n),rep(0,n),PC1,PC2,length=0.1,col="red")

points(0,0,pch=10,col="blue")

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
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4
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2 ●

Each point consists of the loadings for PC1 and PC2 for one coeeficient, e.f., price or miles-per-gallon
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PCA: Understanding the biplot: Scores

The positions of each observation in this new coordinate system of principal

components are called scores and are calculated as linear combinations of the

original variables and the weights pij . For example, the score for the r th sample

on the kth principal component is calculated as

Ykr = pk1xk1 + pk2xk2 + . . .+ pkpxkp (14)

The figure shows the Yk1 scores (on

x-axis) and the Yk2 (on Y axis)
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PCA: Biplot

Biplot: combined view of loadings and scores for the top two PCs

The left and bottom axes show the loadings; the top and right axes show principal component scores.

By comparing the score and loading plot, We can identify the relationships between samples and

variables
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Gene regulation and PCA

Consider now the matrix A of TFAS profiles. There are
N ≈ 20, 000 genes and M ≈ 10 TFs that are stored in an
N ×M matrix

First, this matrix is centered, i.e., the mean of each row is
subtracted from the values of that row.

A
′
ij = Aij − µi

The mean value µi is the mean TFAS for gene i .

Furthermore, the values A
′
ij are divided by the standard

deviation.

This procedure is equivalent to replacing each value by its
Z-score:

Z =
Aij − µ
σ(X )
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Gene regulation and PCA

The authors first decomposed the TFAS profiles into 12
principal components by PCA. Then they performed a
log-linear regression on gene expression using the extracted
principal components.

TFAS R2

Continuous 0.650
Binary 0.425

Substantial improvement over most previous methods (R2

between 9.6% and 36.9%)
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Gene regulation and PCA

Predicted versus observed ESC gene expression values for
the RNA-Seq dataset on the binary TFAS. (PCA
regression)
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Gene regulation and PCA

Scree plot: The R2 statistics of individual TFPCs for the
prediction of RNA-Seq gene expression.

The top three PC account for about 97% of the gene
expression variation.
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Gene regulation and PCA

The authors then look at 668 genes highly expressed in both ESCs and differen-

tiated cells (Uniform High), 838 genes lowly expressed in both (Uniform Low),

782 genes up-regulated in ESCs (ES Up), and 831 genes down-regulated in ESCs

(ES Down).

Visualization in the TFPC1–TFPC2 plane shows that the four sets of genes form clear clusters (Fig. S3A),

suggesting that they are regulated by different combinations of the TFs.
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Gene regulation and PCA

Finally, The authors claimed to learn regulatory rules that
are combinations of TFPCs.

For example, the Uniform Low gene set can be determined
by TFPC1 < −0.77 (score of a gene) AND
TFPC2 < 0.25

The paper rewards more close reading, but let us stop
here.

In sum, joint modeling of ChIP-Seq and gene expression
data (RNA- Seq and microarray) was used to quantify the
contribution of TF binding on gene expression regulation.

PCA was used to capture signal within noisy and partially
redundant data

Interpretation of the patterns of the PC loadings offers
some insight into the gene regulation of ESCs
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The End of the Lecture as We Know It

Email:
peter.robinson@charite.de

Office hours by
appointment

Lectures were once useful; but now, when all can read, and books
are so numerous, lectures are unnecessary. If your attention fails,
and you miss a part of a lecture, it is lost; you cannot go back as

you do upon a book... People have nowadays got a strange
opinion that everything should be taught by lectures. Now, I
cannot see that lectures can do as much good as reading the
books from which the lectures are taken. I know nothing that

can be best taught by lectures, except where experiments are to
be shown. You may teach chymistry by lectures. You might

teach making shoes by lectures!

Samuel Johnson, quoted in Boswell’s Life of Johnson (1791).

mailto:peter.robinson@charite.de
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