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Genome assembly: the basics

The process of puzzling together a complete genome sequence
of an organism for which shotgun sequencing has been per-
formed is referred to as genome assembly.

As the costs for sequencing have declined, the major
challenge becomes computational

Can we sequence and de novo assemble a large (> 100
Mb) genome with the short (50-250bp) reads typical of
current NGS protocols?



Read
Mapping (1)

Peter N.
Robinson

Basics

Review

Genome assembly: the basics

There are two major classes of assembly algorithms
1 Overlap-layout consensus (OLC)
2 De bruijn graph (DBG)

OLC was widely used back in the day when sequencing
was performed by the low-throughput, longer-read Sanger
method.

DBG based methods have dominated the scene since the
introduction of NGS
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Sequencing data: Models and intuition

To get intuition about genome assembly, let us consider a ide-
alized genome that represents a long random sequence of four
bases and that does not contain repeats or other complex struc-
tures.

Consider the simplest sequencing strategy: single-end,
whole-genome shotgun (WGS).

That is, we sample equal-length fragments with starting
points randomly distributed across the genome

For now, ignore sequencing errors and biases
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Sequencing data: Models and intuition

Thus, our shotgun sequencing can be likened to a process
that samples bases from all genome positions at random

The chance that any particular base is sampled is very low
in a single sampling process

However, we perform the sampling process a very large
number of times

Any suggestions as to how we might model this?
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Sequencing data: Models and intuition

The Poisson distribution expresses the probability of a given
number of events occurring in a fixed interval of time and/or
space if these events are iid.

f (k ;λ) = P(X = k) =
e−λλk

k!
(1)

k refers to number of reads that overlap a certain genomic
position (“coverage”)

λ mean sequencing depth
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Sequencing data: Models and intuition

Let’s look at the model more closely

G : genome size (e.g., 3.2× 109 nucleotides for humans)

L: read length (e.g., 100 nucleotides for a typical Illumina
run)

N: read number

nb: total number of sequenced bases

It is now easy to calculate that

nb = N × L (2)

Similarly, the average coverage depth per base is db =
nb
G
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Sequencing data: Models and intuition

k-mers: subsequences with k nucleotides (here: k=3)

Consider the following k-mers in a small genome of 17
nucleotides

Compositionk(TCATTCTTCAGGTCAAA)!
             TCA!
 ! ! !     CAT!
! ! !      ATT!
! ! !       TTC!
! ! !        TCT!
! ! !         CTT!
! ! !          TTC!
! ! !           TCA!
! ! !            CAG!
! ! !             AGG!
! ! !              GGT!
! ! !               GTC!
! ! !                TCA!
! ! !                 CAA!
! ! !                  AAA!

	  

How many 3-mers are there in this genome?
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Sequencing data: Models and intuition

In general there are L− k + 1 k-mer subsequences in a
sequence of length L with k ≤ L.

Let’s say we want to know the total number of k-mers in
our WGS data. Since we have N reads, each of which has
L− k + 1 k-mer subsequences, the total number of k-mers
(nk) is

nk = N × (L− k + 1) (3)

The coverage depth for k-mers is then dk =
nk
G

.

The ratio between the coverage depth for bases and that
for k-mers is then

db
dk

=
nb/G

nk/G
=

L

L− k + 1
(4)
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Sequencing data: Models and intuition

Say we are performing de novo sequencing for an organism that
has not been sequenced before. How can we estimate its overall
genome size?

The number of k-mers in the WGS reads (nk) can be
directly counted

The mean coverage depth of k-mers can be estimated
from the peak value of the empirical k-mer coverage depth
distribution curve

Graphic: Zhenyu Li et al.,

Briefings in functional genomics

(2012) 11 (1): 25-37.

peak depth value dk = 30.4
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Sequencing data: Models and intuition

With this data in hand, we can now estimate the genome size
as

G ≈ nk
dk

(5)

and we can estimate the actual base coverage by

db ≈
L

L− k + 1
× dk (6)

Here, we would use a value of k such that we do not
expect to see a given k-mer more than once in a random
genome

In practice, these estimates are not exact even in a
random genome because of sequencing errors (why?).
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Sequencing data: Models and intuition

Getting back to our initial question, we can now use the mean
base coverage estimate λ = db to estimate the probability that
a given base will not be covered

P(X = 0) =
e−λλ0

0!
= e−λ (7)

Therefore, the probability of seeing at least one read at a given
position is

P(X > 0) = 1− e−λ (8)
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Sequencing data: Models and intuition

So if we want to estimate the mean read depth required
such that at least 99% of the genome is covered once (and
thus the probability of any base is at least 99%)1, we have

P(X > 0) = 0.99 = 1− e−λ

e−λ = 0.01

−λ = −4.605

Thus we need to sequence to an average depth of at least
4.6 to get at least 99% of the genome covered at least
once.

This roughly explains the goal of 6x coverage in initial
Sanger sequencing projects of the human genome

1linearity of expectation
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Sequencing data: Models and intuition

Now let us consider contigs: combinations of overlapping reads
that represent contiguous sequence

Collection of N = 21 reads assembled into 6 contigs

The contigs are assumed to be the best possible
representation of the original DNA sequence

Note that the actual locations of the contigs and their
orientation to one another are unknown to us.
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Sequencing data: Models and intuition

The initial steps of genome assembly are basically an attempt
to find contigs

Genome:	  3.2	  Gb	  
Many	  copies	  of	  genome	  

Reads:	  500bp	  
Only	  one	  end	  sequenced	  
Not	  all	  fragments	  sequenced	  

tgctgctcctacaacatcggccgtgcctg!
               atcggccgtgcctggaataagccct ! Find	  overlapping	  reads	  

...tgctgctcctacaacatcggccgtgcctggaataagccct...	  	   Merge	  overlapping	  reads	  into	  conBgs	  

conBg	   conBg	   conBg	   conBg	  gap	   gap	   gap	  

Result	  of	  assembly	  is	  set	  of	  conBgs	  with	  gaps	  
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Sequencing data: Models and intuition

Putting it all together...

Competition to assemble the human genome:
whole-genome shotgun vs. BAC by BAC
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The human genome project(s)

Public effort: Lander et al., Nature, Feb. 15, 2001.

US, UK, France, Germany, Japan, China

government labs and universities.

BAC-by-BAC sequencing.

Commercial: Venter et al., Science, Feb. 16, 2001.

whole genome random shotgun sequencing.

Celera (www.celera.com)
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BAC by BAC

BAC: bacterial artificial
chromosome

BACs have inserts of
100,000–300,000
nucleotides

Do shotgun sequencing on
each separate BAC;

BACs are much smaller
than the human genome
and correspondingly easier
to assemble.

First assemble individual
BACs, then fit overlapping
BACs together

Image: wikipedia

Advantage: highly accurate. Disadvantage: Slow
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Whole genome shotgun

Myers EW (2000) A Whole-Genome Assembly of Drosophila Science 287:2196–2204

All against all pairwise alignment

Merge to contigs if overlap big enough

Nicknames for contigs: small = rock, smaller = stone,
smaller = pebble.
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Whole genome shotgun

con$g& con$g& con$g& con$g&gap$ gap$ gap$

Scaffold&

Read&pairs&

STS& Genome&

Mapped&scaffolds&

Additional processing to piece together contigs
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Whole genome shotgun: Overlaps

We will be covering mainly algorithms for creating contigs
from reads in these lectures

Let us begin with another topic to build intuition: How
much overlap do we need?

Key questions: How many contigs are there? How big are
the gaps? How long are the contigs?

Overlap between communism and capitalism
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Whole genome shotgun: Contigs and
Overlaps

Recall our definitions

G : genome size. Assume 3× 109 nucleotides

L: read length. Assume 500 nucleotides

N: read number

nb = N · L: total number of sequenced bases

λ = NL/G is the coverage

For instance, 10x coverage of the human genomes requires

N = λG/L = 10 · 3× 109/500 = 60 million reads
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Reads: Probability to start at a given base

In a genome of length G , a read of length L can start
anywhere except at the very ends of the chromosomes

In humans there are c = 23 chromosomes, so c × (L− 1)
positions cannot represent start positions.

For L = 500, we have 23× 499 = 11477 such positions,
but these can be ignored in a genome of 3× 109

nucleotides

Thus, the probability that a read starts at base i is well
approximated by P(read starts at i) ≈ N/G if there are a
total of N reads
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Reads: Probability to start in an interval

Consider an interval I that is as long as a read (L
nucleotides).

The expected number of reads that start in I is then
λ = L× N/G .

Assuming a Poisson distribution, the probability that no
read starts in I is then

P(X = 0) =
e−λλ0

0!
= e−λ (9)

The probability that at least one read starts in I is then

P(X > 0) = 1− P(X = 0) = 1− e−λ (10)
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Reads: Probability to start in an interval

Consider a nucleotide at position i

This nucleotide is in a gap between contigs if no read
starts in the interval

[i − L + 1, i ]

This interval has length L, and thus, the probability that
no read starts in it is e−λ

By linearity of expectation, we can estimate the number of
nucleotides in gaps across the entire assembly as

G · e−λ

Correspondingly, the number of nucleotides included in
contigs is G ·

(
1− e−λ

)



Read
Mapping (1)

Peter N.
Robinson

Basics

Review

Contigs: How many are there?

con$g& con$g& con$g&gap$ gap$

R&L&L&L& L& L&L&
L&R&
R&

Each contig has a unique rightmost read (“R”)

The probability that a given read is the rightmost read is
the same as the probability that no other read starts
within the read

If the read starts at position i , this is the probability that
no read starts within the interval [i − L + 1, i ], which we
have already calculated as e−λ
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Contigs: How many are there?

The number of contigs must be equal to the number of
rightmost reads

There are a total of N reads, each of which has a
probability of e−λ of being an R reads. Thus, the expected
number of contigs is

Ne−λ

The expected number of reads per contig is then 1/e−λ
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Contigs: How big are they?

We have seen that the expected size of the sequenced
region of the genome is (1− e−λ) · G
The expected number of contigs is Ne−λ Therefore, the
expected size of a contig is simply

(1− e−λ) · G
Ne−λ

Thus if we go for a coverage of λ = 6 of the human
genome with 500 nt reads, we would expect roughly

1 N = λG/L =36 million reads
2 100% ×(1− e−λ) =99.8% of the genome being sequenced
3 A total of Ne−λ=89,235 contigs

4 An average contig length of
(1− e−λ) · G

Ne−λ
=33,536

nucleotides
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Contigs and overlaps

But we have completely neglected the topic of how much of
an overlap is required to connect two reads?

Let say we require an overlap of one nucleotide only
Then any two random reads will overlap with a probability
of 1/4 – not exactly what we want...
Let θ refer to the proportion of L required to detect an
overlap

θ"

We will now combine a group of reads to a contig if they
are connected by overlaps of length ≥ θL
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Expected number of contigs

Let us now calculate the expected number of contigs, given
that we demand an overlap of at least θL between combined
reads

, As before the probability that a read starts at a given
position is N/G

The probability that k reads start in an interval that is L
long is again approximated by the Poisson

The calculation that a given read at posistion i is the
rightmost read now requires not that there is no read in
the interval [i − L + 1, i ], but instead that there is no read
in the leftmost (1− θ) proportion of this interval
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Expected number of contigs

θ"(1�θ)"

Top$read$is$R$if$no$other$read$starts$in$$
its$le1most$(1�θ)$por3on"

This$read$doesn‘t$map$to$same$$
Con3g$because$overlap$is$too$short"

We need to calculate the probability that zero reads start
in (1− θ)L.

Above, the expected number of reads that start in I of
length L is then λ = L× N/G .

Here, we adjust this to reflect the expected number of
reads that start in (1− θ)L to be (1− θ)λ.
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Expected number of contigs

θ"(1�θ)"

Top$read$is$R$if$no$other$read$starts$in$$
its$le1most$(1�θ)$por3on"

This$read$doesn‘t$map$to$same$$
Con3g$because$overlap$is$too$short"

The expected number of contigs is then N (number of
reads) time the probability that a read is the rightmost
read of an island, which is equivalent to their being no
reads starting in (1− θ)L

E[#contigs] = N × P(no read starts in (1− θ)L)

= Ne−(1−θ)λ

= Ne−(1−θ)LN/G � by definition of λ
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Expected number of contigs
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1 Genome assembly: the basics

2 Hamiltonian and Eulerian Graphs: Review
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Königsberg

The “Hello World” of Eulerian graphs is of course Königsberg
with its seven bridges. Königsberg is located on both sides of
the Pregel River, and comprises two large islands which were
connected to each other and the mainland by seven bridges.
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Königsberg

The problem was to find a walk through the city that would
cross each bridge once and only once.

Euler formulated the problem as a graph problem

A

C

D

B
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Genome Sequencing And Graphs

Our goal today is to find an algorithm that will allow us to take
a collection of short NGS sequence reads – say, strings of
100–250 nucleotides in length with the lettersd ACGT – and
to output a longer string representing the Genome that was
sequenced.

We will present several simplified scenarios with the goal
of motivating and explaining the de Bruijn graph and its
use in genome assembly algorithms.
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Naive Genome Assembly

We will begin by discussing a ridiculously naive string recon-
struction problem. Here, and in the following, the “string” will
represent a genome that we have sequenced, and the k-mer
subsequences (with k=3) will represent our short reads.

We will begin by examining a small genome of 17
nucleotides

TCATTCTTCAGGTCAAA!
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Naive Genome Assembly

Imagine we have a function called compositionk that takes a
DNA sequence and returns a set of all k-mers contained in it

In the following examples we will choose k = 3

Compositionk(TCATTCTTCAGGTCAAA)!
             TCA!
 ! ! !     CAT!
! ! !      ATT!
! ! !       TTC!
! ! !        TCT!
! ! !         CTT!
! ! !          TTC!
! ! !           TCA!
! ! !            CAG!
! ! !             AGG!
! ! !              GGT!
! ! !               GTC!
! ! !                TCA!
! ! !                 CAA!
! ! !                  AAA!
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Naive Genome Assembly

Although we can display the k-mers in “genome order”, which
would make it ridiculously easy to reconstruct the original
genome, in actuality we do not know the original order of the
kmers. Therefore, we might as well show them lexicographi-
cally.

Compositionk(TCATTCTTCAGGTCAAA)!
„Genome order“:!
TCA CAT ATT TTC TCT CTT TTC TCA CAG AGG GGT GTC TCA CAA AAA!
„Lexicographic order“!
AAA AGG ATT CAA CAG CAT CTT GGT GTC TCA TCA TCA TCT TTC TTC!
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Naive Genome Assembly

Let us now put each of the k-mers into the node of a graph
and connect the graph by edges

Compositionk(TCATTCTTCAGGTCAAA)!
„Genome order“:!
TCA CAT ATT TTC TCT CTT TTC TCA CAG AGG GGT GTC TCA CAA AAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	   CAG 	   AGG 	   GGT 	   TCA 	  GTC 	   CAA 	   AAA	  

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	   CAG 	   AGG 	   GGT 	   TCA 	  GTC 	   CAA 	   AAA	  

Put	  k-‐mers	  into	  nodes	  

Connect	  nodes	  with	  edges	  
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Naive Genome Assembly

But what if the nodes are not connected? Can we order them
and put them back together again?

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	   CAG 	   AGG 	   GGT 	   TCA 	  GTC 	   CAA 	   AAA	  
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Naive Genome Assembly

The question is whether we can reconstruct the original string
if we only have the nodes and do not know what order they are
on?

Challenge: Find the following sequence based only on a
collection of 3-mer subsequences:

TCATTCTTCAGGTCAAA!

	  
The basic strategy to do this involves searching for
overlaps between k-mers.

E.g., connect k-meri with k-merj if

suffix(k-meri ) = prefix(k-merj)
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Naive Genome Assembly

If we do not know the order of the nodes the task seems rather
difficult...

TCATTCTTCAGGTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  
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Naive Genome Assembly

However, just to demonstrate how to generate a path that
represents the sequence, let us pretend we are omnisicent start
with the k-mer TCA and connect it to CAT and ATT.

TCATTCTTCAGGTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  

TCATT!
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Naive Genome Assembly

Conitnuing in this way ...

TCATTCTTCAGGTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  

TCATTCT!
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Naive Genome Assembly

Further ...

TCATTCTTCAGGTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  

TCATTCTTCAG!
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Naive Genome Assembly

And finally ...

TCATTCTTCAG GTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  

TCATTCTTCAGGTCAAA!
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Naive Genome Assembly

Notice that the solution to our problem was a path that visited
every node exactly once.

TCATTCTTCAG GTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	  

TCATTCTTCAGGTCAAA!
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Hamiltonian path

A Hamiltonian path is a path in an undirected or directed
graph that visits each vertex exactly once. A Hamiltonian cycle
is a Hamiltonian path that is a cycle.

Determining whether Hamiltonian paths and cycles exist in
graphs is the Hamiltonian path problem, which is
NP-complete.
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Another approach

Instead of labeling the nodes with the k-mer subsequences, let
us label the edges with these k-mers

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	   CAG 	   AGG 	   GGT 	   TCA 	  GTC 	   CAA 	   AAA	  
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Another approach

We will then label the nodes with the (k-1)-mer, i.e., 2-mer
suffixes and prefixes

TCA 	  
TC	   CA	  

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	   CAG 	   AGG 	   GGT 	   TCA 	  GTC 	   CAA 	   AAA	  
TC	   CA	   AT	   TT	   TC	   CT	   TT	   TC	   CA	   AG	   GG	   GT	   TC	   CA	   AA	   AA	  
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Constructing a de Bruijn graph

Let us now merge identically labels nodes in this graph. We
will show the steps along the way for our example graph. A key
idea is that we will merge identical nodes whilst retaining
the edges.

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	  

CAG 	  

AGG 	  

GGT 	  

TCA 	  

GTC 	  

CAA 	   AAA	  
TC	   CA	   AT	   TT	   TC	   CT	   TT	   TC	   CA	  

AG	  

GG	   GT	  

TC	  

CA	   AA	   AA	  
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Constructing a de Bruijn graph

Merge two CA nodes whilst retaining their edges

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	   CTT 	  TCT	   TTC 	   TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  
TC	   CA	   AT	   TT	   TC	   CT	   TT	   TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  
TCA 	  
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Constructing a de Bruijn graph

Continuing...

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	  

CTT 	  

TCT	  

TTC 	   TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

TC	   CA	   AT	   TT	   TC	  

CT	   TT	   TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  
TCA 	  
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Constructing a de Bruijn graph

Merge two TC nodes whilst retaining their edges. Continuing...

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	   ATT 	   TTC	  

CTT 	  

TCT	   TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  
TC	   CA	   AT	   TT	  

CT	   TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  
TCA 	  
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Constructing a de Bruijn graph

Merge two TT nodes whilst retaining their edges. Continuing...

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

TC	   CA	   AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  
TCA 	  
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Constructing a de Bruijn graph

Continuing...

TCATTCTTCAGGTCAAA!

TCA 	   CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

TC	   CA	   AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  
TCA 	  
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Constructing a de Bruijn graph

Merged two CA nodes whilst retaining their edges.

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  TCA 	  
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Constructing a de Bruijn graph

Continuing...

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	   AA	  TCA 	  
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Constructing a de Bruijn graph

Merged two AA nodes whilst retaining their edges.

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  TCA 	  

This is the de Bruijn graph of the string TCATTCTTCAGGTCAAA.
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Traversing a de Bruijn graph

Let us now examine how we might reconstruct the original
sequence from this de Bruijn graph

TCA 	  

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  

TCATT...!

Follow the edges and write down the letters
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Traversing a de Bruijn graph

Continuing

TCA 	  

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  

TCATTCTT...!

Follow the edges and write down the letters
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Traversing a de Bruijn graph

Continuing

TCA 	  

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  

TCATTCTTCAGGT...!

Follow the edges and write down the letters
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Traversing a de Bruijn graph

Done!

TCA 	  

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  

TCATTCTTCAGGTCAAA!

Follow the edges and write down the letters
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Hamilton and Euler

So we have seen two potential methodologies for traversing a
graph to reconstruct a sequence based on the Hamiltonian and
the Eulerian path problem.

TCATTCTTCAGGTCAAA!

TCA 	  CAT 	  ATT 	   TTC	  CTT 	   TCT	   TTC 	  TCA 	  CAG 	  AGG 	   GGT 	   TCA 	  GTC 	  CAA 	  AAA	   TCA 	  

TCATTCTTCAGGTCAAA!

TCA 	  
CAT 	  

ATT 	  
TTC	  

CTT 	  

TCT	  

TTC 	  

TCA 	  
CAG 	  

AGG 	  GGT 	  

GTC 	  

CAA 	  

AAA	  

AT	  

CT	  

TT	  

TC	   CA	  

AG	  

GG	  

GT	  

AA	  

TCATT...!

Which do we take?
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Hamilton and Euler

The Eulerian path problem (Is there a path that visits every
edge exactly once), and the Hamiltonian path problem (is
there a path that visits every edge exactly once?) are superfi-
cially similar.

It turns out that2

the Eulerian path problem has efificient algorithms to solve
it

the Hamiltonian path problem is NP complete

2We will not review proofs here, they are standard
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de Bruijn Graph of k-mers

The de Bruijn graph of a collection of k-mers is

A representation of every k-mer as an edge between its
prefix and its suffix

The nodes of the graph are thus the (k-1)-mer suffices and
prefices

All nodes with identical labels are merged, preserving edges
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de Bruijn Graph of k-mers

Algorithm 1 Create annotation
1: Form a unique node for each k-mer in kmers

2: for each k-mer ∈ kmers do
3: Connect prefix node and suffix node with

edge

4: end for
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Eulerian Graphs

A Eulerian cycle is a path that traverses every edge exactly
once and returns at the end of the traversal to the start node.

Does this graph contain a Eulerian cycle?
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Eulerian Graphs

A Eulerian cycle is a path that traverses every edge exactly
once and returns at the end of the traversal to the start node.

Does this graph contain a Eulerian cycle?
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Eulerian Graphs

A Eulerian cycle is a path that traverses every edge exactly
once and returns at the end of the traversal to the start node.

Does this graph contain a Eulerian cycle?
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N50

The N50 measure is used to estimate the quality of a genome
assembly

Arrange the contigs from largest to smallest

Find the position where the contigs cover 50% of the total
genome size

The length of the contig at this position is defined as the
N50

The longer the N50 is, the better the assembly
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Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading

Miller JR (2010) Assembly algorithms for next-generation
sequencing data.
Genomics 95:315–327

Flicek P, Birney E (2009) Sense from sequence reads:
methods for alignment and assembly.
Nature Methods 6:S7–S11

Li Z (2011) Comparison of the two major classes of
assembly algorithms: overlap-layout-consensus and
de-bruijn-graph.
Brief Funct Genomics 11:25-37.
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