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Today

Last time we looked at some basic concepts of genome se-
quencing and assembly. It should however be clear that just
looking for a Eulerian path in a de Bruijn graph will not solve
all problems. Today, we will look at some ideas and concepts
to use de Bruijn graphs for practical assembly algorithms

Main source for today:

Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA

fragment assembly. PNAS 98:9748-53.
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The Dr. Seuss-Ome

Just to review the topics of the last lecture, we will adapt
a brilliant idea of Michael Schatz (CHSL), who used the first
sentence of Dicken’s A Tale of Two Cities to illustrate De Bruijn
graphs

Dr. Seuss (Theodor Seuss Geisel), American writer of children’s books. I Can Read With My Eyes Shut!

(1978)
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The Dr. Seuss-Ome

Shredded&Seuss&Reconsruc-on&

The&more&that&you&read,&the&more&things&you&will&know.&The&more&that&you&learn,&the&more&places&you'll&go.&

&
Imagine&Seuss&accidentally&shreds&the&first&prin-ng&of&I"can"read"with"my"eyes"shut!"

The&more&that&& you&read&the&& more&things&you&& will&know&The& more&that&you& learn&the&more&& Places&youll&go&

more&that&you&& read&the&more&& things&you&will& know&The&more& that&you&learn& the&more&places&&

that&you&read&& the&more&things& you&will&know& The&more&that& you&learn&the&

Many different copies of the book are shredded into three
word fragments (“3-mer” subsequences)

Start position of the fragments is random

Goal: find overlaps to reconstruct the Seussome
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The Dr. Seuss-Ome

Greedy&Reconsruc-on&

The&more&that&&

you&read&the&&

more&things&you&&

will&know&The&

more&that&you&

learn&the&more&&

Places&youll&go&

more&that&you&&

read&the&more&&

things&you&will&

know&The&more&

that&you&learn&

the&more&places&&

that&you&read&&

the&more&things&

you&will&know&

The&more&that&

you&learn&the&

•  Let‘s&try&to&reconstruct&the&original&text&on&the&basis&of&
overlaps&

•  Start&with&an&arbitrary&fragment&
•  „Extend“&the&fragment&with&fragments&whose&2Eprefix&matches&

the&last&2Esuffix&

the&more&things&

We&choose&this&3Emer&„at&random“&
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The Dr. Seuss-Ome

Greedy&Reconsruc-on&

The&more&that&&

you&read&the&&

more&things&you&&

will&know&The&

more&that&you&

learn&the&more&&

Places&youll&go&

more&that&you&&

read&the&more&&

things&you&will&

know&The&more&

that&you&learn&

the&more&places&&

that&you&read&&

the&more&things&

you&will&know&

The&more&that&

you&learn&the&

•  „Extend“&the&fragment&with&fragments&whose&2@prefix&matches&
the&last&2@suffix&

the&more&things&

Which&3@mer&should&we&
extend&now??&

more&things&you&&

things&you&will&

you&will&know&

will&know&The&

know&The&more&

more&that&you&

more&that&you&&
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The Dr. Seuss-Ome

Greedy&Reconsruc-on&

The&more&that&&

you&read&the&&

more&things&you&&

will&know&The&

more&that&you&

learn&the&more&&

Places&youll&go&

more&that&you&&

read&the&more&&

things&you&will&

know&The&more&

that&you&learn&

the&more&places&&

that&you&read&&

the&more&things&

you&will&know&

The&more&that&

you&learn&the&

•  „Extend“&the&fragment&with&fragments&whose&2@prefix&matches&
the&last&2@suffix&

the&more&things&

The&repeated&k@mer&makes&the&
correct&reconstruc-on&ambiguous&

more&things&you&&

things&you&will&

you&will&know&

will&know&The&

know&The&more&

more&that&you&

more&that&you&&

that&you&learn&

that&you&read&&

The&more&things&you&will&know&the&more&that&you&[learn/read]&
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The Dr. Seuss-Ome

the$more$things$

Original$30mer$

the$more$ more$things$
the$more$things$

20mer$ver3ces$connected$by$
edge$labeled$with$30mer$

G = (V ,E )

V all length k − 1 fragments (here: k − 1 = 2)

E directed edges between consecutive subfragments with
labels of length k (here: k = 3)

Note that vertices overlap by k−2 words (here: k−2 = 1)
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The Dr. Seuss-Ome

How do we choose a value for k in real life?

“Big enough”: the k − 1 mer sequences should mainly be
unique

However, memory usage grows as O(nk), or about
n ≈ 2.4× 109 nucleotides,k-mer size k = 27, requiring
about 15 GB (nk/4 bytes) of memory to store the nodes
alone.

Repeats in typical genomes are larger than individual
reads, so even if we could hope to sequence without
errors, we would not quite yet have a complete solution to
the assembly problem

We will now construct a de Bruijn graph (DBG) from the
Seussome as explain in the previous lecture
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The Dr. Seuss-Ome

DBG	  Reconstruc.on	  

The	  more	  that	  	  

you	  read	  the	  	  

more	  things	  you	  	  

will	  know	  The	  

more	  that	  you	  

learn	  the	  more	  	  

Places	  youll	  go	  

more	  that	  you	  	  

read	  the	  more	  	  

things	  you	  will	  

know	  The	  more	  

that	  you	  learn	  

the	  more	  places	  	  

that	  you	  read	  	  

the	  more	  things	  

you	  will	  know	  

The	  more	  that	  

you	  learn	  the	   A	  par.cular	  Eulerian	  tour	  of	  the	  
graph	  reconstructs	  the	  original	  text	  
but	  there	  are	  mul.ple	  such	  tours	  

The	  more	  that	  you	  read,	  the	  more	  things	  you	  will	  know.	  The	  more	  that	  you	  learn,	  the	  more	  places	  you'll	  go.	  

more	  things	  
The	  more	  

more	  that	  

The	  more	  

that	  you	  

you	  read	  	  

read	  the	  

things	  you	  

you	  will	  

will	  know	  

know	  The	  

you	  learn	  

learn	  the	  

more	  places	  	   Places	  youll	   youll	  go	  
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The Dr. Seuss-Ome

DBG	  Compression	  

The	  more	  that	  	  

you	  read	  the	  	  

more	  things	  you	  	  

will	  know	  The	  

more	  that	  you	  

learn	  the	  more	  	  

Places	  youll	  go	  

more	  that	  you	  	  

read	  the	  more	  	  

things	  you	  will	  

know	  The	  more	  

that	  you	  learn	  

the	  more	  places	  	  

that	  you	  read	  	  

the	  more	  things	  

you	  will	  know	  

The	  more	  that	  

you	  learn	  the	  

A<er	  reconstruc=on,	  many	  edges	  are	  
unambiguous	  and	  can	  be	  

compressed	  

The	  more	  that	  you	  read,	  the	  more	  things	  you	  will	  know.	  The	  more	  that	  you	  learn,	  the	  more	  places	  you'll	  go.	  

more	  things	  you	  will	  know	  The	  
The	  more	  

more	  that	  

The	  more	  

that	  you	  

you	  read	  the	  	  

You	  learn	  the	  

more	  places	  youll	  go	  
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Back to real life...

Unfortunately, there is a time when it is necessary to wake up
to the realities of real life...In the rest of the lecture we will
cover the EULER algorithm as developed by Pevzner, Tang
and Waterman (2001).

The authors showed that EULER was superior to previous
algorithms based the overlap-layout-consensus paradigm. There
were two key ideas

Intelligent way of dealing with repetitive regions

Intelligent way of dealing with sequence errors

Superpath approach to disambiguating the de Bruijn graph
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EULER

Comparative analysis of euler, phrap, cap, and tigr assemblers

Every box corresponds to a contig in Neisseria meningitidis
assembly

colored boxes correspond to assembly errors
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EULER

Unfortunately, the straightforward Eulerian path approach, al-
though very promising, did not scale up well. The problem is
that sequencing errors transform a simple de Bruijn graph into
a tangle of erroneous edges.
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EULER

- Li et al. (2011) Briefings in functional genomics (2012) 11 (1): 25-37.

The 5 k-mers which crossed the error base appear in low frequency

the surrounding k-mers appear in high frequency.

In practice, the situations are often more complex than this
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EULER

- Li et al. (2011) Briefings in functional genomics (2012) 11 (1): 25-37.

Distribution of 17-mer frequency for error free and 1% erroneous data

In the 1% error curve, about 80% k-mer species have frequency below five,
most of which are caused by sequencing errors.

Therefore, an obvious heuristic is to remove low-frequency k-
mers from the assembly



Read
Mapping (2)

Peter N.
Robinson

EULER

Consider this DNA sequence, which consists of four unique
segments A, B, C, D, and one triple repeat R (in red).

We perform WGS and obtain 16 reads

The reads are here conveniently colored according to their
sequence of origin
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EULER

Every read corresponds to a vertex in the overlap graph

two vertices are connected by an edge if the corresponding reads overlap.

The fragment assembly problem is thus cast as finding a path in the overlap
graph visiting every vertex exactly once, a Hamiltonian Path Problem.

The Hamiltonian Path Problem is NP-complete

This is why fragment assembly of highly repetitive genomes is a notoriously
difficult problem.
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EULER

In an informal way, one can visualize the construction of
the de Bruijn graph by representing a DNA sequence as a
“thread” with repeated regions covered by a “glue” that
“sticks” them together

The resulting de Bruijn graph consists of 4 + 1 = 5 edges
(we assume that the repeat edge is obtained by gluing
three repeats and has multiplicity three).

In this approach, every repeat corresponds to an edge
rather than a collection of vertices in the layout graph.
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EULER

Obviously, de Bruijn graph is a much simpler representation of repeats than
the overlap graph

fragment assembly is now cast as finding a path visiting every edge of the
graph exactly once, an Eulerian Path Problem.

There are two Eulerian paths in the graph: one of them corresponds to the
sequence reconstruction ARBRCRD, whereas the other one corresponds to
the sequence reconstruction ARCRBRD.

In contrast to the Hamiltonian Path Problem, the Eulerian path problem is
easy to solve even for graphs with millions of vertices, because there exist
linear-time Eulerian path algorithms
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EULER

Read errors cause characteristic patterns in the de Bruijn graph

The numer of nodes “explodes”
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EULER

Ronen R (2012) Bioinformatics 28:i188-96.

Up to 90% of nodes in de Bruijn assembly grphs may stem from sequence
errors
Here: The alignment of a 1975 bp contig from the assembly with Velvet
and k=31, showing two insertions in the alignment, having respective
lengths 1 bp and 15 bp.
The de Bruijn graph constructed from the set of permissively aligned reads
to this contig contains bulges and whirls at regions corresponding to the
insertions in the contigs
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EULER: error correction

If we knew the genome sequence and could somehow
correctly align the reads, it would be relatively easy to
perform error correction

But of course we do not know the true genome seqeunce G

If we knew the set of all k-mers present in G , we could
also try to correct the reads accordingly

We can approximate this set based on the evidence in the
reads data using the assumption that true k-mers are
present multiple times in the collection of reads but
error-related k mers have low counts in the data

Gk : the set of all k-tuples in genome G
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EULER: error correction

Gk : the set of all k-tuples in genome G

An k-mer is called solid if it belongs to more than M
reads and weak otherwise.

M is a threshold, e.g., 4

A natural approximation for Gk is the set of all solid
k-mers from a sequencing project.

Now let T be a collection of k-mers called a spectrum.

A string s is called a T -string if all its k-mers belong to T .
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EULER: Strand ambiguity

WGS is typically not strand-specific

Solution: Treat each k-mer as actually being two k-mers,
the original sequence and the reverse complement

Zerbino DR, Birney E (2008) Genome Res. 18, 821–829
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EULER: error correction

Spectral Alignment Problem.
Given a string s and a spectrum T , find the minimum number
of mutations in s that transform s into a T -string.

We are given a collection of reads (strings) S = {s1, . . . , sn}
from a sequencing project and an integer k.

The spectrum of S is a set Sk of all k-mers from the
reads s1, . . . , sn and s1, . . . , sn

s denotes a reverse complement of read s.

Let ∆ be an upper bound on the number of errors in each
DNA read
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EULER: error correction

Error Correction Problem.
Given S , ∆, and k , introduce up to ∆ corrections in each read
in S in such a way that |Sk | is minimized.

An error in a read s affects at most k individual k-mers in s and k more
k-mers in s

Thus, an error usually creates 2k erroneous k-mers that point to the same
sequencing error

If the error is close to the end of a read, less erroneous k-mers are created
(2d for positions within a distance d < k from the endpoint of the reads)

A greedy approach for the Error Correction Problem is to look for error
corrections in the reads that reduce the size of Sk by 2k (or 2d for
positions close to the endpoints). This simple procedure already eliminates
86.5% of the errors in sequencing reads.
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EULER: error correction

Greedy Error Correction.
Look for error corrections in the reads that reduce the size of
Sk by 2k (or 2d for positions close to the endpoints).

Why does this work?

This approach eliminated 86.5% of errors in the test
bacterial genomes used

Similar heuristics improve error correction to 98% (look for
k-mers that are nearly identical to other k-mers with high
multiplicity)

For details see Pevzner PA, Tang H, Waterman MS (2001) A new approach to fragment assembly in

DNA sequencing. In Proceedings of the Fifth International Conference on Computational Biology

(RECOMB 2001, Montreal). pp. 256265.
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EULER: Eulerian Superpath

Recall first the Eulerian path

We are given a collection of reads (strings)
S = {s1, . . . , sn}
Define the de Bruijn graph G (Sk) with vertex set Sk1 (the
set of all (k1)-tuples from S) as follows.

1 An (k1)-tuple v ∈ Sk1 is joined by a directed edge with an
(k1)-tuple w ∈ Sk1, if Sk contains an l-tuple for which the
first k1 nucleotides coincide with v and the last k1
nucleotides coincide with w .

2 Each k-tuple from Sk corresponds to an edge in G (Sk).

We first need to recall what a Eulerian path and cycle is,
and what a Chinese postman path is.
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Traversable graph

A traversable graph is one that can be drawn without taking a
pen from the paper and without retracing the same edge. In
such a case the graph is said to have an Eulerian path (a trail
in a graph which visits every edge exactly once.)

A"

B"

C"

D"

Is this graph traversable?
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Traversable graph

A"

B"

C"

D"

Vertex Degree

A 3
B 3
C 3
D 3

This graph does not have a Eulerian path
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Traversable graph

A"

B"

C"

D"

E"

Is this graph traversable?
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Traversable graph

A"

B"

C"

D"

E"

Vertex Degree

A 3
B 3
C 4
D 4
E 2

This graph has a Eulerian path from A to B or vice versa
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Traversable graph

A"

B"

C"

D"

E"F"

Is this graph traversable?
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Traversable graph

A"

B"

C"

D"

E"F"

Vertex Degree

A 4
B 4
C 4
D 4
E 2
F 2

This graph has a Eulerian cycle
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Traversable graph

The pattern is related, of course, to the degrees of the vertices
of the graph

When the order of all the vertices is even, the graph is
traversable and we can draw it.

If there are two vertices of odd degree and all other
vertices are of even degree, there is a Eulerian path

If there are more than two odd vertices the graph cannot
be traversed without repeating an edge.
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Chinese postman problem

The Chinese postman problem (CPP), postman tour or route
inspection problem is to find a shortest closed path or circuit
that visits every edge of a (connected) undirected graph. Each
edge must be visited once but it can be visited multiple times

the problems was named ’Chinese Postman’ because it
was originally studied by the Chinese mathematician Kwan
Mei-Ko in 1962

There are several relatively straightforward algorithms for
the CPP (we will try one in the recital)
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Chinese postman problem

The Chinese Postman Problem is closely related to the
problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem

One can transform the Chinese Postman Problem into the
Eulerian Path Problem by introducing multiplicities of
edges in the de Bruijn graph.
For example, one can substitute every edge in the de Bruijn graph by k parallel edges, where k is the
number of times the edge is used in the Chinese Postman path.

If S contains the only sequence s1, this operation creates m “parallel” edges for every k-tuple

repeating m times in s1
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Chinese postman problem

Nomenclature

A vertex v is called a . . .

source if indegree(v) = 0
sink if outdegree(v) = 0
branching vertex if indegree(v) outdegree(v) > 1

For the NM genome, the de Bruijn graph has 502,843 branching vertices for

original reads (for k-tuple size 20). Error corrections simplify this graph and lead

to a graph with 382 sources and sinks and 12,175 branching vertices.
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Chinese postman problem

A path v1, . . . , vn in the de Bruijn graph is called a repeat if
indegree(v1) > 1, outdegree(vn) > 1, and indegree (v1) =
outdegree(vi ) = 1 for 1 ≤ i ≤ n1. Edges entering the vertex v1

are called entrances into a repeat, whereas edges leaving the
vertex vn are called exits from a repeat.

An Eulerian path visits a repeat a few times, and every such visit defines a pairing

between an entrance and an exit.
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Chinese postman problem

Repeats may create problems in fragment assembly, because
there are a few entrances in a repeat and a few exits from a
repeat, but it is not clear which exit is visited after which
entrance in the Eulerian path.

A read-path covers a repeat if it contains an entrance into
and an exit from this repeat
Every covering read-path reveals some information about
the correct pairings between entrances and exits.
A repeat is called a tangle if there is no read-path
containing this repeat
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Chinese postman problem

QUESTION: Which read keeps this repeat from being a tangle?
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Chinese postman problem

QUESTION: Which read keeps this repeat from being a tangle?

ANSWER: The uppermost path covers the repeat and defines
the correct pairing between the corresponding entrance and
exit. If this path were not present, the repeat v1, . . . , vn would
become a tangle.
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Eulerian Superpath Problem

Eulerian Superpath Problem
Given an Eulerian graph and a collection of read-paths in this
graph, find an Eulerian path in this graph that contains all these
paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths P in this graph into a new
graph G1 with a new system of paths P1. Such transformation
is called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (G ,P) and (G1,P1). Our goal
is to make a series of equivalent transformations

(G ,P)→ (G1,P1)→ . . .→ (Gk ,Pk)

that lead to a system of paths Pk , with every path being a
single edge.
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Eulerian Superpath Problem

We will describe a simple equivalent transformation of the
graph

Let x = (vin, vmid) and y = (vmid , vout) be two consecutive
edges in graph G , and let Px ,y be a collection of all paths from
P that include both these edges as a subpath.
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x , y-detachment

Informally, x , y -detachment bypasses the edges x and y via a
new edge z and directs all paths in Px ,y through z , thus
simplifying the graph.

However, this transformation affects other paths and needs to be defined
carefully.

Define P→X as a collection of paths from P that end with x

Define Py→ as a collection of paths from P that start with y

x , y -detachment is a transformation that adds a new edge z = (vin, vout)

and deletes the edges x and y from G

1 substitute z for x , y in all paths from Px,y

2 substitute z for x in all paths from P→X

3 substitute z for y in all paths from Py→
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x , y-detachment

Because every detachment reduces the number of edges in G ,
the detachments will eventually shorten all paths from P to
single edges and will reduce the Eulerian Superpath Problem
to the Eulerian Path Problem.

The EULER paper and several other papers from that
group describe a number of clever bells and whistles for
genome assembly by de Bruijn graph analysis that we have
not covered here

Especially interesting are strategies for pairwise end
sequencing, known colloquially as double-barrel shotgun
sequencing, and for resolving repeats

See references at the end of these slides
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Velvet

We will now discuss the Velvet algorithm of Zerbino and Bir-
ney, in particular the strategies for error correction, which are
different from those of EULER

Velvet uses a slightly different formulation of the de Bruijn
graph (not relevant for the rest of the discussion today)
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Velvet

EULER relied upon erroneous k-mers haveing a low coverage.
Velvet instead focuses on topological features.

Erroneous data create three types of structures: “tips”
due to errors at the edges of reads

“bulges” due to internal read errors or to nearby tips
connecting

erroneous connections due to cloning errors or to distant
merging tips

The three features are removed consecutively.
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Velvet

graphic: wikipedia
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Velvet

graphic: wikipedia

Whenever a node A has only one outgoing arc that points
to another node B that has only one ingoing arc, the two
nodes (and their twins) are merged. Iteratively, chains of
blocks are collapsed into single blocks.
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Velvet

graphic: wikipedia

A node is considered a tip and should be erased if

it is disconnected on one of its ends

the length of the information stored in the node is shorter
than 2k

and the arc leading to this node has a low multiplicity ( In
other words, starting from that node, going through the
tip is an alternative to a more common path)
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Velvet: bubble

graphic: wikipedia

We consider two paths redundant if they start and end at
the same nodes (forming a “bubble”) and contain similar
sequences.

Such bubbles can be created by errors or biological
variants, such as SNPs or cloning artifacts prior to
sequencing.
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Velvet: bubble

Erroneous bubbles are removed by an algorithm called Tour
Bus.

Let us consider this graph
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Velvet: bubble

Detection of redundant paths is done through a
Dijkstra-like breadth-first search.

The algorithm starts from an arbitrary node and
progresses along the graph, visiting nodes in order of
increasing distance from the origin.

The distance between two consecutive nodes A and B is
the length of s(B) divided by the multiplicity of the arc
leading from A to B.

This ad hoc metric gives priority to higher coverage, more
reliable, paths.
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Velvet: bubble

The search (BFS) starts from A and spreads toward the
right.

The progression of the top path (through B’ and C’) is
stopped because D was previously visited.

The nucleotide sequences corresponding to the alternate
paths B’C’ and BC are extracted from the graph, aligned,
and compared.
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Velvet: bubble

The two paths are judged similar, so the longer one, B’C’,
is merged into the shorter one, BC.

The merging is directed by the alignment of the consensus
sequences, indicated in red lines in B.

Note that node X, which was connected to node B’, is
now connected to node B.

The search progresses, and the bottom path (through C”
and D’) arrives second in E. Once again, the
corresponding paths, C”D’ and CD are compared.
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Velvet: bubble

CD and C”D’ are judged similar enough.

The longer path is merged into the shorter one.
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Velvet

We have discussed 2 of the three error correction heuristics
of Velvet. Error correction could be shown to substantially
improve the N50 on simulated datasets



Read
Mapping (2)

Peter N.
Robinson

Summary

Today we have discussed de Bruijn graphs for genome assembly
and touched on some of the bells and whistles that are required
to get this techniqwue to work on real world data (error cor-
rection, repeats...).

There are at least 25 academic de novo genome
assemblers, each possessing its own range of application,
are developed for short reads datasets from different
sequencing platforms in the last few years

Thus, genome assembly is still an active area of
algorithmic research and development

New algorithms will be required to get the most out of
longer NGS reads in the near future (nanopore etc)

Overview: Zhang W et al (2011) A practical comparison of de novo genome

assembly software tools for next-generation sequencing technologies. PLoS One.

6:e17915.



Read
Mapping (2)

Peter N.
Robinson

Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading

Pevzner PA, Tang H, Waterman MS (2001) An Eulerian
path approach to DNA fragment assembly
Proc Natl Acad Sci U S A 98:9748-53

Compeau PE, Pevzner PA, Tesler G (2011) How to apply
de Bruijn graphs to genome assembly.
Nat Biotechnol 29:987-91

Zerbino DR, Birney E (2008) Velvet: algorithms for de
novo short read assembly using de Bruijn graphs.
Genome Res 18:821-829.

mailto:peter.robinson@charite.de

