
Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Read Mapping
Burrows Wheeler Transform and Reference Based

Assembly

Peter N. Robinson

Institut für Medizinische Genetik und Humangenetik
Charité Universitätsmedizin Berlin

Genomics: Lecture #3 WS 2014/2015

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Today

Reference based assembly: what’s the goal?

Exploiting the data for reference based assembly: from
naive algorithms to suffix trees/arrays

Discussion of suffix based string index algorithms

Goal is to review background needed to understand the
Burrows Wheeler Transform and bwa for reference based
genome alignment (next time)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Outline

1 Reference-based assembly: What’s the goal?

2 Naive algorithms

3 Suffix Array

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Reference-Based Assembly

Referenced based assembly follows the goal of finding the dif-
ferences between an individual’s genome and the reference
genome for the corresponding species, rather than characteriz-
ing the genome of that species in the first place.

A major application is in medical diagnostics

Other applications include the characterization of variation
in model organisms such as mice and plant and animal
breeding programs

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Genomic Diagnostics: A Paradigm Shift in
Medicine?

UK 100,000 Genomes Project

sequence 100,000 whole genomes
from NHS patients by 2017. NIH Undiagnosed Diseases

Network

effective and responsible sharing of
genomic and clinical data

Sci Transl Med 6:252ra123 (2014)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

A standard clinical test?

Genome (or exome) sequencing can be extremely useful
for patients with rare diseases and cancer

It is still not very useful for common disease
(read the delightfully cogent blog of Dr Murphy: http://thegenesherpa.blogspot.de/, May 10, 2010)

But: Clinical NGS resequencing is rapidly gaining in
importance in many areas

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

So why not use de novo assembly?

de novo assembly algorithms with de Bruijn graphs are
computational demanding and error-prone

We would like to use our knowledge about the reference
human genome to guide alignment of NGS reads of
individual humans

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Outline

1 Reference-based assembly: What’s the goal?

2 Naive algorithms

3 Suffix Array

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

So why not use de novo assembly?

Faster search algorithms are based on preprocessing of the
text (genome) to build a substring index

Using the resulting data structure, occurrences of a
pattern can be found quickly.

a substring index is a data structure which gives substring
search in a text or text collection in sublinear time.

1 Suffix tree
2 Suffix array
3 FM index
4 . . .

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

String searches

String matching algorithms identify the positions where one or
multiple strings are found as substrings of a larger string

Classic book by Dan
Gusfield

Today: review of tries,
suffix tree/array

Next time: BWT, bwa

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Naive string search

Our “genome”: bananasavannah (n characters)
Our “read” (pattern): nas (m characters)

The simplest string algorithm
would simply slide the pattern
across the genome , extending it
letter for letter as long as there is
a match

Run time O(nm)

Perfectly fine if we only have one
read...

Bananasavannah!
nas!
Bananasavannah!
 nas!
Bananasavannah!
 nas!
Bananasavannah!
 nas!
Bananasavannah!
 nas!
!
!
!
!

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Naive string search

If we do not have just one read we want to map, but say `
reads with a total length of |reads| , then the runtime
becomes O(n · |reads|)
The combined length of the reads, |reads| is hugh, often
much bigger than the genome size

(it is obvious that if we sequence a genome to 50x
coverage then |reads| ≈ 50n)

In practice, this is extremely slow!

Let us now look at some slightly more intricate, but still naive
ways of performing reference based genome alignment

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Tries

A trie (from retrieval), is a multi-way tree structure useful for
storing strings over an alphabet.

Usually pronounced like “try”

A data structure for representing a
collection of strings

Fast pattern matching within this
collection

banana$

bandana$

nasa$

anna$

Annex$

Let’s make a trie for this

collection of ”reads”

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (1)

A trie is defined formally as the smallest tree over an alphabet
Σ such that

Each edge of the trie is labeled with one character c ∈ Σ

A node has at most one outgoing edge labeled with any
given character c for any c ∈ Σ

Each key (string contained in the trie) is ”spelled out”
along some path starting at the root

Tries can be constructed to have all of the suffixes of some larger string be the keys

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (1)

banana$!
bandana$!
nasa$!
anna$!
Annex$!

root$
b$

a$

n$

a$

n$

a$

$$

Add each word to the trie one at a time.
The letters of the word label the edges, with one
node/edge for each letter
The dollar sign $ is a termination character

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (2)

banana$!
bandana$!
nasa$!
anna$!
annex$!
!
!
!
!

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

Adding the second word bandana

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (3)

banana$!
bandana$!
nasa$!
anna$!
annex$!
!
!
!
!

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

Adding the third word nasa

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (4)

banana$!
bandana$!
nasa$!
anna$!
annex$!
!
!
!

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$

Adding the fourth word anna

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (5)

banana$!
bandana$!
nasa$!
anna$!
annex$!
!
!
!

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

Adding the fifth word annex

Adding the termination character $

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (5)

Let us now use the trie to map reads to the genome

instead of sliding individual reads down the genome one by
one, we just slide the trie down the genome once

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (6)

bananasavannah!

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

Search for a pattern match starting at position 1 of
genome

Found banana

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (7)

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

bananasavannah!

Search for a pattern mach starting at position 2 of genome
No match (only matched first two letters of anna$)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (8)

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

bananasavannah!

Search for a pattern mach starting at position 3 of genome

No match (only matched first two letters of nasa$)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (9)

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

bananasavannah!

Search for a pattern mach starting at position 4 of genome

No match (only matched first two letters of anna$)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie (10)

root$
b$

a$

n$

a$

n$

d$

$$

a$
n$

$$

a$

a$

n$

$$

a$

s$

a$

$$

a$

n$

n$

a$
e$

x$

$$

$$

bananasavannah!

Search for a pattern mach starting at position 5 of genome
Found nasa$

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie: That pesky Dollar sign

$ is a symbol that does not appear anywhere else in our
template T .

We define it to be “less” than our other characters
lexicographically

For instance, for genomics we would have
$ < A < C < G < T

The $ enforces a lexicographic rule that we know from
dictionaries: For instance, “over” comes before “overture”.

For instance AC comes before ACG because we are
actually comparing AC$ with ACG$ and by definition $
comes before G

$ also ensures that no suffix is a prefix of any other suffix

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

So what have we gained?

Recall the running time of the simple naive algorithm was
O(m · |reads|) with n=genome length and |reads|
combined length of reads

If m′ is the maximum length of any read, then the runtime
of the trie algorithm is the O(m′n) for matching and
O(|reads|) for trie construction.

But . . . The amount of memory we need for the trie is in the
worst case proportional to the total length of the reads, which
can be enormous: O(|reads|). Can we flip the paradigm and
preprocess the genome?

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

In the previous example, we made a trie out of the “reads” and
slid this trie across our “genome” to search for matches. Let us
now examine another strategy that will take us to suffix trees
and arrays.

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

T:MISSISSIPI T$: MISSISSIPI$

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

Each path from the root to a leaf represents a suffix, and each suffix is represented by a path from the root

to a leaf.

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

SISSI	

The nodes have implicit labels that reflect the string of
characters on the path from the root to the node.

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

Each substring of T is represented by a path from the root,
i.e., every T substring is a prefix of some suffix of T

Thus to search for a substring, start at the root and follow
the edges labeled with the characters of S

If at some point there is no outgoing edge for the next
character of S , then S is not a substring of T

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

MISS is a substring of T

MIST is not a substring

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

A string S is a suffix of T if it is a substring and the final
node on the walk has an outgoing edge labeled $

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

PI is a substring of T

PI is also a suffix of T

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

How many times does some string S occur in T?

Follow the path for S

If we finish at some node n, then S occurs the same
number of times as the number of leaf nodes in the
subtree rooted at n

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

The substring SI occurs

twice in T

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Trie

What is the longest repeated substring S of T?

This is the deepest node with 2 or more children

root	 M	
I	 S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	
S	 S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	

P	

P	

$	

I	

$

S	

S	

I	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

S	

S	

I	

I	

P	

P	

$	

I	

P	

P	

$	

I	
$	

2	

1	
3	

4	

1	

ISSI is the longest repeated

substring

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Constructing a Suffix Trie

The naive algorithm is pretty simple to implement

Algorithm 1 Suffix Trie(T)

1: T+ = $
2: root = {}
3: for i=1 to i=length(T) do
4: n = root # n is the current node
5: for c in T [i :] # for each char in the i-th suffix do
6: if c /∈ n then
7: n[c] = {} # add outgoing edge to n if needed
8: end if
9: n = n[c] # switch current node to child node

10: end for
11: end for
12: return root

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Searching a Suffix Trie

followPath returns the node at the end of the path or NULL
if there is no path.

Algorithm 2 followPath(T ,S)

1: root = SuffixTrie(T)

2: n = root # n is the current node
3: for i=1 to i=length(S) do
4: c = S[i] # i-th char of S
5: if c /∈ n then
6: return NULL # not found
7: end if
8: n = n[c] # switch current node to child node
9: end for

10: return n

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Searching a Suffix Trie

Algorithm 3 HasSubstring(T ,S)

1: n = FollowPath(T,S)
2: if n 6= NULL then
3: return TRUE

4: else
5: return FALSE

6: end if

hasSubstring basically checks if FollowPath does not
“fall off” the tree and return NULL

One could write a similar function hasSuffix that would
check if the node returned by followPath is not NULL
and is equal to $

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie: Size complexity

We would like to know the limits for the size of a suffix trie

How many nodes does a suffix trie have
if the string it is based on has m
characters?

Consider the string T = aaaa$, i.e., m
a’s in a row

There is one root

there are m nodes with an incoming
”a” edge

there are m + 1 nodes with an
incoming ”$” edge

Total 2m+2 nodes, i.e., O(m) nodes

$"a"

$"a"

$"a"

$"a"

$"

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie: Size complexity

We would like to know the limits for the size of a suffix trie

How many nodes does a suffix trie have if
the string it is based on has m characters?

Consider the string T = AAABBB$ with
n = 3 A’s, n = 3 B’s and m = 2n

There is one root

there are n nodes on the ”b” chain (right)

there are n nodes on the ”a” chain
(middle)

there are n chains of n ”b” nodes (hanging
from each ”a” node)

there are 2n + 1 ”$” nodes (not shown
here)

Total n2 + 4n + 2 nodes, i.e., O(n2) nodes

B"

B"

B"

B"A"

A"

A"
B"

B"

B"

B"

B"
B"

B"

B"

T=AAABBB"
Suffixes:"
AAABBB!
 AABBB!
 ABBB!
 BBB!
 BB!
 B!

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie: Size complexity

Suffix%
trie%

root%

Deepest%leaf%

Top%to%bo3om%
Max%#%nodes:%
Length%of%longest%suffix%+1%
=%m+1%

Le@%to%right:%
Max%#%nodes%=%max%#%substrings%of%any%length%
%%%%%%%%%%%%%%%%%%%%%%%%≤%m%

Thus, we have seen two example string classes with size complexity (nmber
of nodes) that grow at O(m) and O(m2)

The figure shows that the worst case is O(m2)

On real life data, the number of nodes grows more than linearly but less
than quadratically – still usually too much to be practical

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie: Size complexity

The challenge of algorithmic development for NGS read aligners
is basically to make string indices smaller and faster. We will
go through various ideas that take us from the suffix trie to the
suffix tree

Combine non-branching paths into a single edge with a
string label

Replace the string label with O(1) references to the
original “genome” string

O(n) “online” method for constructing suffix tree
(Ukkonen)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

S"

S"

I"

I"

P"

P"

$"

I"

P"

P"

$"

...."

SSIPPI$" PPI$"

...."

Combine non-branching paths into a single edge with a string label

This clearly reduces the number of nodes and edges

As a side effect, it ensures that all internal nodes have more than one child
node.

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$MISSISSIPPI$$

SSI$

SSIPPI$$
PPI$$

P

PI$$
I$$

S$
SI$

I$

SSIPPI$$ PPI$$

SSIPPI$$

PPI$$
$$

I$

PPI$$
$$

Once non-branching paths are combined into single edges, what is the
effect on the number of leaves and internal nodes?

T =MISSISSIPPI$

m = length(T) = 12

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$MISSISSIPPI$$

SSI$

SSIPPI$$
PPI$$

P

PI$$
I$$

S$
SI$

I$

SSIPPI$$ PPI$$

SSIPPI$$

PPI$$
$$

I$

PPI$$
$$

There are m leaf nodes (obvious, since we have m suffixes)

Recall that if a full binary tree has m leaf nodes, it has exactly m − 1
internal nodes

Our tree has at most as many internal nodes as a full binary tree (because
an internal node of a suffix tree can have > 2 children)

Thus, there are ≤ 2m − 1 total nodes, i.e., O(m) nodes

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$MISSISSIPPI$$

SSI$

SSIPPI$$
PPI$$

P

PI$$
I$$

S$
SI$

I$

SSIPPI$$ PPI$$

SSIPPI$$

PPI$$
$$

I$

PPI$$
$$

Thus, the number of nodes is now linear in the size of the input

BUT the total length of the edge labels is still O(m2).

To reduce the size complexity of the edges, we will simply store the offset
and length of the original labels for each edge (two ints or two longs
depending on the implementation, i.e., O(1)).

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$MISSISSIPPI$$

SSI$

SSIPPI$$
PPI$$

P

PI$$
I$$

S$
SI$

I$

SSIPPI$$ PPI$$

SSIPPI$$

PPI$$
$$

I$

PPI$$
$$

Thus, the number of nodes is now linear in the size of the input

BUT the total length of the edge labels is still O(m2).

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

MISSISSIPPI$!
MISSISSIPPI$!
 ISSISSIPPI$!
 SSISSIPPI$!
 SISSIPPI$!
 ISSIPPI$!
 SSIPPI$!
 SIPPI$!
 IPPI$!
 PPI$!
 PI$!
 I$!
 $!

m!chars!

m(m+1)/2!!
chars!

If we store all of the suffixes in the
edges, this results in O(m2) space
complexity.

To reduce the size complexity of
the edges, we will simply store the
offset and length of the original
labels for each edge (two ints or
two longs depending on the
implementation, i.e., O(1)).

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$(0,12)$

(2,3)$

(5,7)$
(8,4)$

(8,1)$

(9,3)$
(10,2)$

(2,1)$

(3,2)$
(4,1)$

(5,7)$
(8,4)$

(5,7)$

(8,4)$
(11,1)$(1,1)$

(8,4)$
(12,1)$

MISSISSIPPI$!
012345678901!

0$

11$

1$
4$

7$
10$

8$
9$

3$
6$

2$

5$

We can store the offsets in the leaves

For example, the longest suffix has offset zero

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

root$(0,12)$

(2,3)$

(5,7)$
(8,4)$

(8,1)$

(9,3)$
(10,2)$

(2,1)$

(3,2)$
(4,1)$

(5,7)$
(8,4)$

(5,7)$

(8,4)$
(11,1)$(1,1)$

(8,4)$
(12,1)$

MISSISSIPPI$!
012345678901!

0$

11$

1$
4$

7$
10$

8$
9$

3$
6$

2$

5$

Label:'„S“'

Label:'„SSI“'

Label:'„SSISSIPPI$“'

The node label is the concatenated edge labels from the root to the node

As mentioned, the labels are not stored explicitly

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Trie to Suffix Tree

Node depth:
Number of edges
from the root to a
given node

Label depth: Total
length of edge labels
(characters) on a
path from the root
to a given node

root$(0,12)$

(2,3)$

(5,7)$
(8,4)$

(8,1)$

(9,3)$
(10,2)$

(2,1)$

(3,2)$
(4,1)$

(5,7)$
(8,4)$

(5,7)$

(8,4)$
(11,1)$(1,1)$

(8,4)$
(12,1)$

MISSISSIPPI$!
012345678901!

0$

11$

1$
4$

7$
10$

8$
9$

3$
6$

2$

5$

Label:'„S“'

Label:'„SSI“'

Label:'„SSISSIPPI$“'

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to build a Suffix Tree

root$(0,12)$

(2,3)$

(5,7)$
(8,4)$

(8,1)$

(9,3)$
(10,2)$

(2,1)$

(3,2)$
(4,1)$

(5,7)$
(8,4)$

(5,7)$

(8,4)$
(11,1)$(1,1)$

(8,4)$
(12,1)$

MISSISSIPPI$!
012345678901!

0$

11$

1$
4$

7$
10$

8$
9$

3$
6$

2$

5$

Label:'„S“'

Label:'„SSI“'

Label:'„SSISSIPPI$“'

Naive method 1: First build a suffix trie and then convert
it to a suffix trie by combining non-branching paths and
relabeling the edges

Naive method 2: Build a suffix tree one suffix at a time
(add entire string, then the suffix starting at position
1,2,3,...)

These methods that O(m2) time

Is there a difference in the space complexity of the two
methods?

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to build a Suffix Tree

One of the most elegant algorithms around is Ukkonen’s linear
time online suffix tree consruction algorithm. It is well described
in Gusfield’s book

Ukkonen, E. (1995), On-line construction of suffix trees, Algorithmica 14 (3): 249260,

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to build a Suffix Tree

We will not go into the details of Ukkonen’s algorithm here

Memory and time for construction are linear, a substantial
improvement over the suffix trie

The basic search algorithms presented for the suffix trie
work with corresponding modifications for the suffix tree

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Tree: Find all matches of P to T

root$MISSISSIPPI$$

SSI$

SSIPPI$$
PPI$$

P

PI$$
I$$

S$
SI$

I$

SSIPPI$$ PPI$$

SSIPPI$$

PPI$$
$$

I$

PPI$$
$$

P=SI T=MISSISSIPPI$!
!
Walk down path corresponding to P!
Visit all leaf nodes in subtree (DFS)!
!
!

0$

11$

1$
4$

7$

10$

8$
9$

3$

5$

2$

6$

MISSISSIPPI!
 SI SI!

Let k = # of matches and n be the length of the pattern

The search is then O(n + k)

Note the subtree where we stop has O(k) nodes and DFS to enumerate
these nodes is linear time

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Tree: Back to the Real World

Although a linear algorithm, i.e., O(n) is desirable, the
big-O notation tells us nothing about the constant factor

The constant factor is relatively high for suffix trees

Up to over 20 bytes per node for naive implementations

Practical implementations reach about 12.5 bytes per node

Can be relatively impractical for indexing say the human
genome

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Outline

1 Reference-based assembly: What’s the goal?

2 Naive algorithms

3 Suffix Array

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Arrays

The suffix array, at least in its simplest incarnation, requires
only 4 bytes per character of the input sequence. We will
discuss some of the algorithms surrounding suffix arrays here in
preparation for our treatment of BWT algorithms next time.

Notation

We will refer to our string “MISSISSIPPI” as S [1 . . .N]
with N = 12

a naive implementation of the suffix array basically
manipulates an array of pointers to the suffixes S [1 . . .N],
S [2 . . .N], . . ., S [N . . .N]

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Naive)

T: MISSISSIPPI$!
0: MISSISSIPPI$!
1: ISSISSIPPI$!
2: SSISSIPPI$!
3: SISSIPPI$!
4: ISSIPPI$!
5: SSIPPI$!
6: SIPPI$!
7: IPPI$!
8: PPI$!
9: PI$!
10: I$!
11: $!

Form all possible suffixes from
the input string
T=MISSISSIPPI$

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Naive)

0: MISSISSIPPI$!
1: ISSISSIPPI$!
2: SSISSIPPI$!
3: SISSIPPI$!
4: ISSIPPI$!
5: SSIPPI$!
6: SIPPI$!
7: IPPI$!
8: PPI$!
9: PI$!
10: I$!
11: $!

11: $!
10: I$!
7: IPPI$!
4: ISSIPPI$!
1: ISSISSIPPI$!
0: MISSISSIPPI$!
9: PI$!
8: PPI$!
6: SIPPI$!
3: SISSIPPI$!
5: SSIPPI$!
2: SSISSIPPI$!

sort%

Sort lexicographically (e.g., radix sort)

This has the effect of bringing repeated substrings together

This suggests a search algorithm to find all occurences
1 suffix sort the text
2 binary search for the query and scan until mismatch

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Array

Longest repeated substring problem

MISSISSIPPI$!

i" j"

Consider the naive approach

Try all indices i and j of a string with m characters

Compute the longest common prefix for each pair

complexity O(Dm2) where D is the length of the longest
match.

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Array

Longest repeated substring problem

0: MISSISSIPPI$!
1: ISSISSIPPI$!
2: SSISSIPPI$!
3: SISSIPPI$!
4: ISSIPPI$!
5: SSIPPI$!
6: SIPPI$!
7: IPPI$!
8: PPI$!
9: PI$!
10: I$!
11: $!

11: $!
10: I$!
7: IPPI$!
4: ISSIPPI$!
1: ISSISSIPPI$!
0: MISSISSIPPI$!
9: PI$!
8: PPI$!
6: SIPPI$!
3: SISSIPPI$!
5: SSIPPI$!
2: SSISSIPPI$!

sort%

Easy if we have a suffix array of the input string

Scan through list to find neighbors with longest common
prefix

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Array

We have examined a naive method for constructing the
suffix array until now

There are a number of linear time suffix array construction
algorithms

We will instead present a simpler O(n log n) algorithm due
to Manber and Myers

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Suffix Array

Manber Myers Algorithm

Initialize: Sort on first character (using key-indexed
counting sort)

Phase i : Given an array of suffixes sorted on the first 2i−1

characters, create an array of suffixes sorted on the first s i

characters

Running time O(n log n)

We can perform a single phase in linear time

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Manber/Myers)

0: cacaaaacgcacaaaaa$!
1: acaaaacgcacaaaaa$!
2: caaaacgcacaaaaa$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
6: acgcacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!
9: cacaaaaa$!
10: acaaaaa$!
11: caaaaa$!
12: aaaaa$!
13: aaaa$!
14: aaa$!
15: aa$!
16: a$!
17: $!

17: $!
1: acaaaacgcacaaaaa$!
16: a$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
15: aa$!
14: aaa$!
13: aaaa$!
12: aaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
11: caaaaa$!
7: cgcacaaaaa$!
2: caaaacgcacaaaaa$!
8: gcacaaaaa$!

Initialization: radix sort on first character

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Manber/Myers)

17: $!
1: acaaaacgcacaaaaa$!
16: a$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
15: aa$!
14: aaa$!
13: aaaa$!
12: aaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
11: caaaaa$!
7: cgcacaaaaa$!
2: caaaacgcacaaaaa$!
8: gcacaaaaa$!

17: $!
16: a$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
15: aa$!
14: aaa$!
13: aaaa$!
12: aaaaa$!
1: acaaaacgcacaaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

Step 1: radix sort on first two characters

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Manber/Myers)

17: $!
16: a$!
15: aa$!
14: aaa$!
3: aaaacgcacaaaaa$!
13: aaaa$!
12: aaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
1: acaaaacgcacaaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

17: $!
16: a$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
15: aa$!
14: aaa$!
13: aaaa$!
12: aaaaa$!
1: acaaaacgcacaaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

Step 2: radix sort on first four characters

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Manber/Myers)

17: $!
16: a$!
15: aa$!
14: aaa$!
13: aaaa$!
12: aaaaa$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
10: acaaaaa$!
1: acaaaacgcacaaaaa$!
6: acgcacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
9: cacaaaaa$!
0: cacaaaacgcacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

17: $!
16: a$!
15: aa$!
14: aaa$!
3: aaaacgcacaaaaa$!
13: aaaa$!
12: aaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
1: acaaaacgcacaaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

Step 3: radix sort on first eight characters

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

How to Build a Suffix Array (Manber/Myers)

17: $!
16: a$!
15: aa$!
14: aaa$!
3: aaaacgcacaaaaa$!
13: aaaa$!
12: aaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
1: acaaaacgcacaaaaa$!
10: acaaaaa$!
6: acgcacaaaaa$!
11: caaaaa$!
2: caaaacgcacaaaaa$!
0: cacaaaacgcacaaaaa$!
9: cacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!

0: 17!
1: 16!
2: 15!
3: 14!
4: 3!
5: 13!
6: 12!
7: 4!
8: 5!
9: 1!
10: 6!
11: 11!
12: 2!
13: 0!
14: 9!
15: 7!
16: 8!
!

0: cacaaaacgcacaaaaa$!
1: acaaaacgcacaaaaa$!
2: caaaacgcacaaaaa$!
3: aaaacgcacaaaaa$!
4: aaacgcacaaaaa$!
5: aacgcacaaaaa$!
6: acgcacaaaaa$!
7: cgcacaaaaa$!
8: gcacaaaaa$!
9: cacaaaaa$!
10: acaaaaa$!
11: caaaaa$!
12: aaaaa$!
13: aaaa$!
14: aaa$!
15: aa$!
16: a$!
17: $!

inverse	

To sort by 8-mers we can reuse information we have from sorting two mers

To sort the suffixes 0 and 9 (cacaaaac and cacaaaaa), we can reuse information.

We now that the first four chars are sorted and only need to care about the last four chars. But
these were sorted previously!

To get the index of the second four chars of suffix 0, we look at the suffix at 0+4=4 (rank 7 in
sorted list), and for suffix 9, we look at 9+4=13 (rank 5 in sorted list)

Read
Mapping (2)

Peter N.
Robinson

Reference-
based
assembly:
What’s the
goal?

Naive
algorithms

Suffix Array

Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading

Shrestha AM et al (2014)A bioinformatician’s guide to the
forefront of suffix array construction algorithms. Brief
Bioinform 15(2):138-54.

mailto:peter.robinson@charite.de

	Reference-based assembly: What's the goal?
	Naive algorithms
	Suffix Array

