
Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Read Mapping
Burrows Wheeler Transform and Reference Based

Assembly

Peter N. Robinson

Institut für Medizinische Genetik und Humangenetik
Charité Universitätsmedizin Berlin

Genomics: Lecture #5 WS 2014/2015

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Today

Burrows Wheeler Transform

FM index

Burrows Wheeler Aligner (bwa)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Outline

1 Burrows Wheeler Transform

2 FM Index

3 Burrows Wheeler Aligner – bwa

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

The BWT applies a reversible transformation to a block of input
text. The transformation does not itself compress the data, but
reorders it to make it easy to compress with simple algorithms
such as move-to-front coding.
Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm.
Technical report 124. Palo Alto, CA: Digital Equipment Corporation.

Basis for the bzip2 compression algorithm

Basis for many of the read mapping algorithms in common
use today

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

The significance of the BWT for most of the rest of the
world is as a data compression technique

However, the BWT leads to a block-sorted data structure
that is well suited to searching short strings in a larger
text.

The FM index uses the BWT to enable search with time
linear in the length of the search string.
Ferragina P, Manzini P (2000) Opportunistic Data Structures with Applications.

Proceedings of the 41st IEEE Symposium on Foundations of Computer Science

Today, we will explain the BWT and then the FM index
and show how they are used in bwa for read alignment.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

First step: form all rotations of the input text, which we will
call T. Note that as with the suffix array and suffix tree, we
append a termination character $ to the end of the text

T="abracadabra$“!
!

 0: abracadabra$!
 1: bracadabra$a!
 2: racadabra$ab!
 3: acadabra$abr!
 4: cadabra$abra!
 5: adabra$abrac!
 6: dabra$abraca!
 7: abra$abracad!
 8: bra$abracada!
 9: ra$abracadab!
10: a$abracadabr!
11: $abracadabra!

!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

Second step: Sort the rotated strings lexicographically

 0: abracadabra$!
 1: bracadabra$a!
 2: racadabra$ab!
 3: acadabra$abr!
 4: cadabra$abra!
 5: adabra$abrac!
 6: dabra$abraca!
 7: abra$abracad!
 8: bra$abracada!
 9: ra$abracadab!
10: a$abracadabr!
11: $abracadabra!

!

 0: $abracadabra!
 1: a$abracadabr!
 2: abra$abracad!
 3: abracadabra$!
 4: acadabra$abr!
 5: adabra$abrac!
 6: bra$abracada!
 7: bracadabra$a!
 8: cadabra$abra!
 9: dabra$abraca!
10: ra$abracadab!
11: racadabra$ab!

sort%

recall that the termination character $ comes before every other character lexicographically.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

Third step: The Burrows Wheeler Transform is simply the
last column of the Burrows Wheeler matrix.

$abracadabra!
a$abracadabr!
abra$abracad!
abracadabra$!
acadabra$abr!
adabra$abrac!
bra$abracada!
bracadabra$a!
cadabra$abra!
dabra$abraca!
ra$abracadab!
racadabra$ab!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

We will denote the Burrows Wheeler transform of an input
string T as

BWT(T)

Thus, BWT(T)=”ard$rcaaaabb”

It is relatively easy to implement a naive version of the
BWT

1 Create all rotations of T
2 Sort the rotations lexicographically
3 Concatenate the last character of each rotation to form

BWT(T)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Burrows Wheeler Transform (BWT)

The BWT tends to contain lots of “runs” of identical charac-
ters, which is a good feature to have for compression algorithms
such as run-length encoding.

This is slightly difficult to appreciate with the short strings
we are using for the slides, but consider the following
excerpt of BWT(Macbeth, Act 1, Scene 1):

...uoaoiiiiiiiiiiiiiiiaaaaaiiiiiuiiiiiiiiiiiiiiiiiaAAiiiiiiioieei...

A simple run-length encoding might be

...uoaoi{15}a{5}i{5}ui{17}aA{2}i{7}oie{2}i...

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

BWT and Suffix array

$abracadabra!
a$abracadabr!
abra$abracad!
abracadabra$!
acadabra$abr!
adabra$abrac!
bra$abracada!
bracadabra$a!
cadabra$abra!
dabra$abraca!
ra$abracadab!
racadabra$ab!

 !
[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

BW#matrix#
Suffix#array#with##
corresponding#suffixes#

The Burrows Wheeler matrix is (nearly) the same as the
suffixes referred to by the suffix array of the same string

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

BWT and Suffix array

We can now write an algorithm to create BWT(T) from the
suffix array of T. SA(T), by noting that position i of the BWT
corresponds to the character that is just to the left of the ith
suffix in the original string.
This character is “rotated” around to the back of the BW ma-
trix

abra$abracad!

 !

[7] abra$!

BW#matrix#
Suffix#array#with##
corresponding#suffixes#

Consider the fourth sorted rotation in the BWM and !
the fourth suffix in the suffix array for T=abracadabra$!

The$character$justtothe$le.$ofthe
suffixistheithcharacterofBWT(T)$

T=abracadabra$!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

BWT and Suffix array

abra$abracad!

 !

[7] abra$!

BW#matrix#
Suffix#array#with##
corresponding#suffixes#

Consider the fourth sorted rotation in the BWM and !
the fourth suffix in the suffix array for T=abracadabra$!

The$character$justtothe$le.$ofthe
suffixistheithcharacterofBWT(T)$

T=abracadabra$!

We can now construct the BWT as follows

BWT(T) =

{
T [SA[i]− 1] if SA[i] > 0

$ if SA[i] = 0
(1)

To see the reason for the second case, consider that the first suffix of the suffix array is always $

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

BWT and Suffix array

T=abracadabra$

012345678901

BWT(T) =

{
T [SA[i]− 1] if SA[i] > 0

$ if SA[i] = 0
(2)

$abracadabra!
a$abracadabr!
abra$abracad!
abracadabra$!
acadabra$abr!
adabra$abrac!
bra$abracada!
bracadabra$a!
cadabra$abra!
dabra$abraca!
ra$abracadab!
racadabra$ab!

 !
[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

BW#matrix#
Suffix#array#with##
corresponding#suffixes#

(Work through example)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Constructing a BWT from a Suffix Array

The naive algorithm is pretty simple to implement

Algorithm 1 bwtFromSuffixArray(T)

1: sa = constructSuffixArray(T$)
2: L = length(sa)
3: bwt = new string[L]
4: for i=0 to i=L-1 do
5: if sa[i] = 0 then
6: bwt[i] = $
7: else
8: bwt[i] = T [sa[i]− 1]
9: end if

10: end for
11: return bwt

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

If we have used the BWT to compress a string, and now want
to get the original string back, we need to

1 Reverse the compression procedure (e.g., run-length
encoding)

2 Get the original string back from the BWT

So, how do we reverse the Burrows Wheeler transformation?

The reversibility of the BWT depends on the

LF Mapping property

For any character, the T-ranking of characters in the first
column (F) is the same as order of characters in the last
column (L)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

So, what is the T-ranking?

 !a0b0r0a1c0a2d0a3b1r1a4$!

The T-ranking of the character at any given position is the
number of times that an identical character has preceeded
it in T

The T-ranking of $ is always zero and is omitted here

The ranks shown just to help understand the LF mapping
property, they are not stored explicitly

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

Here is the Burrows Wheeler matrix with the T-ranks of
all the characters.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

What do you notice about the T-ranks of the a characters?

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

The a’s have the same
relative order in the F and
the L columns

A similar observation
pertains to the other
characters

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

The relative T-ranks of the a characters in column F are determined by the
lexicographic ranks of the strings to the right of the characters

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

The relative T-ranks of the a characters in column L must reflect the
lexicographic ranks of the strings to the “rotated” right of the characters

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

 !$0a0b0r0a1c0a2d0a3b1r1a4!
a4$0a0b0r0a1c0a2d0a3b1r1!
a3b1r1a4$0a0b0r0a1c0a2d0 !
a0b0r0a1c0a2d0a3b1r1a4$0!
a1c0a2d0a3b1r1a4$0a0b0r0!
a2d0a3b1r1a4$0a0b0r0a1c0!
b1r1a4$0a0b0r0a1c0a2d0a3!
b0r0a1c0a2d0a3b1r1a4$0a0!
c0a2d0a3b1r1a4$0a0b0r0a1!
d0a3b1r1a4$0a0b0r0a1c0a2!
r1a4$0a0b0r0a1c0a2d0a3b1!
r0a1c0a2d0a3b1r1a4$0a0b0!

These are the same strings (consequence of the rotation!)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

We introduce another
“vertical” ranking

The B-ranking of a
character at a specific
position is the number of
that times the same
character has occured in
the F column “above” the
current position

The B-ranking is thus like
a cumulative count of the
characters

$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Just the F and L columns are shown for better

legibility

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

Column F has a simple
structure: Chunks of
identical characters with
ascending B-ranks

Column L does not
generally have this kind of
strict chunk structure, but
the B-ranks of any given
character also are arranged
in ascending order

$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

As
ce
nd

in
g)
B+
ra
nk
s)

F" L"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

Can we now use these
observations to reconstruct
the original string?

We will first try to
reconstruct the first
column of the BWM

????????????a0!
????????????r0!
????????????d0!
????????????$0!
????????????r1!
????????????c0!
????????????a1!
????????????a2!
????????????a3!
????????????a4!
????????????b0!
????????????b1!

As
ce
nd

in
g)
B+
ra
nk
s)

F" L"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

Consider c0.

We know that the $, all
the a’s, all the b’s, but not
any of the d’s must
precede c0 in the first
column

????????????a0!
????????????r0!
????????????d0!
????????????$0!
????????????r1!
????????????c0!
????????????a1!
????????????a2!
????????????a3!
????????????a4!
????????????b0!
????????????b1!

As
ce
nd

in
g)
B+
ra
nk
s)

F" L"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

The index of c0 in column
F must equal 1+5+2=8

We will refer to this as the
cumulative index
property

????????????a0!
????????????r0!
????????????d0!
????????????$0!
????????????r1!
????????????c0!
????????????a1!
????????????a2!
????????????a3!
????????????a4!
????????????b0!
????????????b1!

As
ce
nd

in
g)
B+
ra
nk
s)

F" L"
)$:)1x)

)a:)5x)

)b:)2x)

)c0)

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

We will reconstruct
the string from
right to left

We know the last
character is $, so we
initialize our
reconstructed string
accordingly

$0 a0!
a0 r0!
a1 d0!
a2 $0!
a3 r1!
a4 c0!
b0 a1!
b1 a2!
c1 a3!
d0 a4!
r0 b0!
r1 b1!

F" L" Reconstruc*on+to+date+

T=...+++++++++$+

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

Because of the cumulative
index property and
because a come right after
$, we go to the second
row of the BWM and find
a0.

The character that
precedes it in T is now in
the last column (L)

$0 a0!
a0 r0!
a1 d0!
a2 $0!
a3 r1!
a4 c0!
b0 a1!
b1 a2!
c1 a3!
d0 a4!
r0 b0!
r1 b1!

F" L" Reconstruc*on+to+date+

T=++...+++++++r0a0$!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

To find the position of r0

in the first column, we
note that its index must
be 1+5+2+1+1=10
because of the cumulative
index property

We go to column L to get
the next preceding
character

$0 a0!
a0 r0!
a1 d0!
a2 $0!
a3 r1!
a4 c0!
b0 a1!
b1 a2!
c1 a3!
d0 a4!
r0 b0!
r1 b1!

F" L" Reconstruc*on+to+date+

T=++...+++++b0r0a0$!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

The game continues...

To find the position of b0

in the first column, we
note that its index must
be 1+5=6 because of the
cumulative index property

We go to column L to get
the next preceding
character

$0 a0!
a0 r0!
a1 d0!
a2 $0!
a3 r1!
a4 c0!
b0 a1!
b1 a2!
c1 a3!
d0 a4!
r0 b0!
r1 b1!

F" L" Reconstruc*on+to+date+

T=++...+a1b0r0a0$!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

Note that to find the
position of a4 with the
cumulative index
property we take into
account of the indixes of
the preceding characters
(i.e., $), as well as that of
a0, a1, a2, a3, so that our
index is 1-4=5

and so on...

$0 a0!
a0 r0!
a1 d0!
a2 $0!
a3 r1!
a4 c0!
b0 a1!
b1 a2!
c1 a3!
d0 a4!
r0 b0!
r1 b1!

F" L" Reconstruc*on+to+date+

T=++...+a4d0a1b0r0a0$!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Reversing the BWT

But what information exactly did we need to do this reversal?

We can do everything starting only from the BWT(T)

If we count the number of each character in BWT(T)1, we
can easily reconstruct the “chunks” of characters in the
first column of the BWM

1
Or we can store it in an array of size O(|Σ|) for characters in some alphabet Σ.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Outline

1 Burrows Wheeler Transform

2 FM Index

3 Burrows Wheeler Aligner – bwa

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

The FM index uses the BWT and some other auxilliary data
structures to generate a fast an efficient index for search for
patterns within a larger string T

Paolo Ferragina and Giovanni Manzini (2000) Opportunistic Data Structures with

Applications. Proceedings of the 41st Annual Symposium on Foundations of

Computer Science. p.390.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

The main data structures of the FM index
are F and L from the BWM

Note that F can be represented as an array
of ints (one per character of our alphabet)

In our example, and using the order
$ < a <b <c <d <r
we have

1 5 2 1 1 2

As mentioned, L is also easily compressible

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

But how can we search?

As mentioned, the BWM is very similar to
a suffix array, but a binary search over just
F and L is obviously not possible (the
“middle” of the matrix is missing)

We will again make use of the B-ranks

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

For example, let us search for the string
P=abra in our “genome” T=abracadabra

Our strategy is to look for all rows of
BWM(T) that have P as a prefix

We successively look for the longer P
suffixes, starting with the last character of
P

But it is easy to find the chunk of the
BWM(T) that starts with a given
character using the cumulative index
property

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'abra"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

Once we have found all rows that begin
with the last letter of P, we can look in L
to identify those rows whose next to last
letter also corresponds to P

We can also read off the B-ranks of these
characters and use the LF mapping to find
the rows in F that begin with these
characters

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'abra"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

Using the LF mapping we find the rows in
F that begin with ra (r0 and r1)

The character that precedes “r” in our
query string P is “b”, so we can continue

We have now matched the last 3
characters of P=abra and continue one
more step using the LF mapping

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'abra"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

We find the rows that begin with bra (b0

and b1) and look at the corresponding
characters in L to see if we have a match
for P

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'abra"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

Finally, we find the rows of the BWM that
begin with our query string: [2, 4)

These are equivalent to the rows we would
have identified with a binary search over
the suffix array (which is of course an
array of start positions of suffixes)

However, it is not immediately clear how
to identify the positions in T that
correspond to P using the FM index.

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'abra"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index

What about the search pattern P=adaa?

We match the last character as previously

But: when we now look at the
corresponding rows of L, there is no “a”

Ergo, the search pattern does not occur in
T.

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search'string'adaa"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Interim Report

We have presented a somewhat naive version of the FM index
search. However, we have glossed over three issues that need
to be solved to produce an efficient and practical algorithm

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Interim Report

Issue #1

How do we efficiently find the preceding
character (i.e., starting from a chunk of
prefixes in or starting in F, how do we find
the correct characters in L to continue
leftwards)?

In the worst case, we may have to scan
down as far as the length of the entire
input string, O(|T |)

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Search"

O(|T|)+

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Interim Report

Issue #2

Recall that we did not want to explicity
store the B-ranks of the characters – this
would be at least 4 bytes per input
character, and whatever advantage we had
with respect to the suffix array would
disappear

So, we still need a way of getting the
B-rank of the characters in L

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Interim Report

Issue #3

Recall that with the suffix array, we explicitly stored the start position of
each suffix of T

We do not have this information with the BWM

So, we still need a way of figuring out where matches occur in T

0: MISSISSIPPI$!
1: ISSISSIPPI$!
2: SSISSIPPI$!
3: SISSIPPI$!
4: ISSIPPI$!
5: SSIPPI$!
6: SIPPI$!
7: IPPI$!
8: PPI$!
9: PI$!
10: I$!
11: $!

11: $!
10: I$!
7: IPPI$!
4: ISSIPPI$!
1: ISSISSIPPI$!
0: MISSISSIPPI$!
9: PI$!
8: PPI$!
6: SIPPI$!
3: SISSIPPI$!
5: SSIPPI$!
2: SSISSIPPI$!

sort%

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Tally Table

Issue #1: efficiently find
the preceding character

Keep a tally table

Precalculate the number
of each specific character
in L up to every row

F"L"
$0a0!
a0r0!
a1d0!
a2$0!
a3r1!
a4c0!
b0a1!
b1a2!
c0a3!
d0a4!
r0b0!
r1b1!

a" b" c" d" r"

1" 0" 0" 0" 0"

1" 0" 0" 0" 1"

1" 0" 0" 1" 1"

1" 0" 0" 1" 1"

1" 0" 0" 1" 2"

1" 0" 1" 1" 2"

2" 0" 1" 1" 2"

3" 0" 1" 1" 2"

4" 0" 1" 1" 2"

5" 0" 1" 1" 2"

5" 1" 1" 1" 2"

5" 2" 1" 1" 2"

Tally"table"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Tally Table

Say we are search for
P=abra

After we have found all
rows beginning with a in
the first step, we need to
find rows with r in the
last column

Say the range of rows is
[i , j]

We look in the tally table
in row i − 1. No
occurences of r to date!

Now look in the tally table
row j . Two occurences of
r to date!

Therefore, we know that
(only) r0 and r1 occur in L
in the range [i , j]

F"L"
$0a0!
a0r0!
a1d0!
a2$0!
a3r1!
a4c0!
b0a1!
b1a2!
c0a3!
d0a4!
r0b0!
r1b1!

a" b" c" d" r"

1" 0" 0" 0" 0"

1" 0" 0" 0" 1"

1" 0" 0" 1" 1"

1" 0" 0" 1" 1"

1" 0" 0" 1" 2"

1" 0" 1" 1" 2"

2" 0" 1" 1" 2"

3" 0" 1" 1" 2"

4" 0" 1" 1" 2"

5" 0" 1" 1" 2"

5" 1" 1" 1" 2"

5" 2" 1" 1" 2"

Tally"table"

0"r‘s"

2"r‘s"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Tally Table

A problem with this idea
is that we need to store
O(|T | · |Σ|) integers

What if we store only
every kth row?

We reduce the size of the
tally table by a factor of
k, but at the price of not
having all of the
information we need
immediately available

F"L"
$0a0!
a0r0!
a1d0!
a2$0!
a3r1!
a4c0!
b0a1!
b1a2!
c0a3!
d0a4!
r0b0!
r1b1!

a" b" c" d" r"

1" 0" 0" 0" 0"

1" 0" 0" 1" 1"

2" 0" 1" 1" 2"

5" 0" 1" 1" 2"

Tally"table"

0"r‘s"

???"

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Tally Table

For instance, to calculate
the rank of the a near the
← ???

We can go to the previous
checkpoint and count the
number of a’s that we
encounter fromthere to
the position we are
interested in: 113 +
1=114

Or: We can go to the
next checkpoint and
substract the number of
a’s that we encounter
along the way: 115-1=114

In general, we will
substract one from the
tally to obtain the
zero-based B-rank

L"
A!
C!
C!
G!
A!
C!
C!
T!
A!
C!
T!
T!
A!
A!
T!
T!
A!

A" C"

113# 42#

115# 47#

Tally"table"

113#a‘s#

???#

115#a‘s#

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Tally Table

Assuming we space the
check point rows a
constant number of rows
away from one another:
O(1), for instance, 50
rows, then lookups are still
O(1) rather than O(|T |)
We now also have a way
of getting the B-ranks we
need for issue # 2 (Still
O(|T |) space, but with a
smaller constant).

L"
A!
C!
C!
G!
A!
C!
C!
T!
A!
C!
T!
T!
A!
A!
T!
T!
A!

A" C"

113# 42#

115# 47#

Tally"table"

113#a‘s#

???#

115#a‘s#

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

Issue #3 referred to the desire to have information as in the suffix array
that would allow us to find the position of matches in the original string

Recall the suffix array stores the indices of suffixes that are equivalent to
the strings of the BWM

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

abracadabra$!
abra Pos. 0!
 abra Pos. 7!

For instance, if we had just used the algorithm described above to find two
occurences of the pattern abra then we could look up the start positions 0
and 7 if we also had the suffix array

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

But, if we stored the entire suffix array, this would incur roughly an
additional 4× |T| bytes of storage

We can use the same checkpoint idea

Don’t store all of the values of the suffix area, just store every kth value

Importantly, we store every kth value for the original string T, not every kth
value in the original suffix array – this ensures constant time.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

?"

So, let’s again search for the pattern P=abra

We find one hit and our “selective suffix array” indicates the index to be at
position 0

What do we do about the other hit?

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

?"

Let us take advantage of the LF mapping

This tells us where to find the d0 in the first column F

We can look this up in our selective suffix array – but note that we have
moved one position to the left – the position of dabra is 6, but the position
of abra is 7!

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Finding indices in T

F" L"
$0abracadabra0!
a0$abracadabr0!
a1bra$abracad0!
a2bracadabra$0!
a3cadabra$abr1!
a4dabra$abrac0!
b0ra$abracada1!
b1racadabra$a2!
c0adabra$abra3!
d0abra$abraca4!
r0a$abracadab0!
r1acadabra$ab1!

[11] $!
[10] a$!
[7] abra$!
[0] abracadabra$!
[3] acadabra$!
[5] adabra$!
[8] bra$!
[1] bracadabra$!
[4] cadabra$!
[6] dabra$!
[9] ra$!
[2] racadabra$!

?"

Note that the fact that we are storing every kth value for the original string
T, ensures that we need to perform at most k − 1 “hops” to retrieve the
index we are looking for

However, we are still keeping O(|T |) elements in the selective suffix array

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

FM Index- Memory footprint

The FM index has a substantially smaller memory footprint
than does the suffix tree (at least 60 GB) or the suffix array (at
least 12 GB)

Component Complexity Size (Human Genome)

F O(|Σ|) 16 bytes (4 ints)
L |T | chars 2 bits ×3× 10y ≈ 750 MB

selective SA ∼
1

k
|T | integers 400 MB with k = 32

checkpoints ∼
1

x
|T | · |Σ| integers 100 MB with x = 128

Total size for FM index of human genome thus about 1.5
GB

Notes: (i) We store the 4 nucleotides with 2 bits each, i.e., 4 nucleotides per byte. (ii) k and x are the

lengths of the skips

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Outline

1 Burrows Wheeler Transform

2 FM Index

3 Burrows Wheeler Aligner – bwa

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

BWT/FM Index algorithms for read mapping

There are lots of published aligners for genomic resequencing.
Perhaps the best known amongst them use the BWT/FM Index
plus lots of Bells and Whistles.

bwa: Li H, Durbin R (2009) Fast and accurate short read
alignment with Burrows-Wheeler transform.
Bioinformatics 25:1754-60.

bowtie: Langmead B, Trapnell C, Pop M, Salzberg SL
(2009) Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol
10:R25.

SOAP2: Li R et al (2009) SOAP2: an improved ultrafast
tool for short read alignment. Bioinformatics. 25:1966-7.

. . .

For no particular reason, I will concentrate on bwa for the rest of today

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa

The nomenclature and descriptions used in the bwa paper are
different in a few ways to those used in this lecture.

Here I will present some of the aspects of the paper

Exact matching is performed roughly as described

A major issue that needs to be solved by any practical
read mapper is inexact matching

We will introduce the topic of inexact matching with the
brute force approach that is mentioned (and rejected) in
the introduction to the bwa paper

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

The prefix trie for string X is a

tree where each edge is labeled

with a symbol and the string

concatenation of the edge

symbols on the path from a leaf

to the root gives a unique prefix

of X.

On the prefix trie, the string

concatenation of the edge

symbols from a node to the root

gives a unique substring of X,

called the string represented by

the node.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

Note that the prefix trie of T is identical to the suffix trie of
the reverse of T

With the prefix trie, testing
whether a query W is an exact
substring of T is equivalent to
finding the node that represents
W , which can be done in
O(|W |) time by matching each
symbol in W to an edge,
starting from the root.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

Consider the suffix array and the prefix trie of GOOGOL

Symbol ∧ marks the

start of the string. The

two numbers in a node

give the SA interval of

the string represented

by the node

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

bwa uses the following notation for “suffix array interval”

All occurrences of subsrings with a
common suffix W appear next to each
other in the suffix array, defining the
SA interval [

R(W),R(W)
]

For instance, the SA interval of “go” is
[1, 2] and the suffix array interval of
“o” is [4, 6]

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

Consider the suffix array and the prefix trie of GOOGOL

The dashed line shows the route

of the brute-force search for a

query string LOL, allowing at

most one mismatch. Edge labels

in squares mark the mismatches

to the query in searching. The

only hit is the bold node [1, 1]

which represents string GOL.

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: GOOGOL

bwa uses the following notation for “suffix array interval”

The bwa paper presents our method of calculating the SA
interval of the query W using a slightly different notation

Can be done iteratively from the end of W

R(aW) = C(a) + Occ(a,R(W)− 1) + 1

R(aW) = C(a) + Occ(a,R(W))

where

C(a) = Number of symbols in X [0, n − 2] that are
lexicographically smaller than a

Occ(a, i)= Number of occurrences of a in

BWT [0, i]

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching, precalculations (1)

Let us follow along the example in the bwa paper (Figure 1 and
Figure 3). We have

Reference string X = ’GOOGOL$’

Query string W = ’LOL’

The precalculations require us to calculate the BWT(X).
For convenience, we show the sorted BWM
0: $GOOGOL

1: GOL$GOO

2: GOOGOL$

3: L$GOOGO

4: OGOL$GO

5: OL$GOOG

6: OOGOL$G

The BWT(X)=’LO$OOGG’

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching, precalculations (2)

We now calculate C (a) for X = ’GOOGOL$’, defined in
the paper as the number of symbols in X [0, n2] that are
lexicographically smaller than a ∈ Σ

Let us assume Σ = {G , L,O}
The vector C is then

a C (a)

G 0
L 2
O 5

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching, precalculations (3)

We now calculate O(a, i) the number of occurrences of a
in B[0, i], where B is the BWT of X

i a O(G , i) O(L, i) O(O, i)

0 G 1 0 0
1 O 1 0 1
2 O 1 0 2
3 G 2 0 2
4 O 2 0 3
5 L 2 1 3

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

The overall algorithm looks like this

Algorithm 2 InexactSearch(W , z)

1: CalculateD(W)
2: return InexRecur(W , |W | − 1, z , 1, |X | − 1)

InexRecur(W , i , z , k , l) returns the SA intervals of
substrings in X that match W with no more than z
differences

W : query
i : Search for matches to W [0..i]
z max number of mismatches
k , l : On the condition that the suffix Wi+1 matches
interval [k ..l]

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Let us examine the CalculateD(W) algorithm

Algorithm 3 CalculateD(W)

1: z ← 0
2: j ← 0
3: for i = 0 to |W | − 1 do
4: if W [j ..i] is not a substring of X then
5: z ← z + 1
6: j ← i + 1
7: end if
8: D(i)← z
9: end for

10: return D

D(i) is the lower bound of the number of differences in
W [0..i] to the best match in X

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Consider that we can implement a search for inexact
matches as a depth-first search (as shown here) or as a
breadth first search (which is actually what bwa does)

We can bound the DFS if we know that it does not make
any sense to continue the search. CalculateD(W) is a
heuristic that allows us to stop the DFS early

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 4 CalculateD(W)
1: z ← 0
2: j ← 0

3: for i = 0 to |W | − 1 do

4: if W [j..i] is not a substring of X then

5: z ← z + 1
6: j ← i + 1

7: end if
8: D(i)← z

9: end for
10: return D

For X = ’GOOGOL$’ and W=’LOL’, the for loop goes from 0..2

we obtain D(0)=0, D(1)=1, D(2)=1

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 5 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Lines 1-3

If the lower bound on the number of differences in W [0..i] is already more than the maximum
number of mismatches z, give up

return null

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 6 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Lines 4-5

If i < 0 then we are arriving from a recursive call where we have finished matching W (potentially
including up to z mismatches)

We return the SA interval {k, `} representing the hits

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 7 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Line 7

Initialize the current interval to the empty set for this recursion

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 8 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Line 8

loop over all nucleotides, looking for a match...

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 9 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Lines 9–11

Figure out the interval in F where the current character b would be

check whether this interval is empty

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Algorithm 10 InexRecur(W , i , z , k , `)
1: if z < D(i) then

2: return ∅
3: end if
4: if i < 0 then
5: return {k, `} //i.e., an SA interval

6: end if
7: I ← ∅
8: for each b ∈ {a, c, g, t} do

9: k ← C(b) + O(b, k − 1) + 1

10: `← C(b) + O(b, `) + 1

11: if k ≤ ` then

12: if b = W [i] then

13: I ← I ∪ InexRecur(W , i − 1, z, k, `) //match

14: else
15: I ← I ∪ InexRecur(W , i − 1, z − 1, k, `) //mismatch, decrement z

16: end if
17: end if
18: end for
19: return D

Lines 12–15

If we have a match, keep going and decrement i

If we have a mismatch, then also decrement z and keep going

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Consider now the role of the D matrix in the DFS shown in the
figure

The initial call to InexRecur(W , i − 1, z − 1, k, `) (with W=LOL and
X=GOOGOL$ and maximally one mismatch allowed) is

InexRecur(W , |W | − 1, z, 1, |X | − 1) i.e., InexRecur(W , 2, 1, 1, 6)

The DFS first passes by lines 1–7 from the root node and chooses the
character ’G’

G does not match the fiurst character of ’LOL’, so there is a mismatch, and
we recursively call InexRecur

The recursive call looks like this InexRecur(W , 1, 0, 1, 6)

When we get to line 1, i = 1 and z = 0. Recalling that we calculated
D(1) = 1, we have that z < D(i), and we return without having examined
the subtree emanating from ’G’

similarly, we avoid descending into the ’O’ subtree

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

bwa: Inexact matching

Therefore, our use of the D matrix allowed use to avoid
continuing the DFS in two subtrees of this prefix trie

Read
Mapping (4)

Peter N.
Robinson

BW
Transform

FM Index

bwa

Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading
Parts of these slides were adapted from the brilliant Youtube lectures of
Ben Langmead on the BWT/FM index (any infelicities are only my fault)

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol 10:R25.

Li H, Durbin R (2009) Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25:1754-60.

Li H, Homer N (2010) A survey of sequence alignment algorithms for
next-generation sequencing. Brief Bioinform. 11:473-83.

mailto:peter.robinson@charite.de

	Burrows Wheeler Transform
	FM Index
	Burrows Wheeler Aligner – bwa

