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Today

Gene Expression

Previous gold standard: Microarrays

Basic RNA-seq protocol and transcript quantification

RNA-seq read mapping
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Eukaryotic Gene Expression: Overview

Graphics credit: CSBCJU; Biochemistry, Dr Jakubowski

http://employees.csbsju.edu/hjakubowski/classes/ch331/bind/olbindtransciption.html
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Microarrays

Hybridization of samples to thousands of probes on a slide
simultaneously

Many applications:
1 Transcriptional profiling (e.g., search for DE genes)
2 Copy-number variation
3 SNP genotyping
4 DNA protein interaction (Chip-on-Chip)
5 many others

Likely to be gradually replaced by next-generation
sequencing, but the technology will probably remain
relevant in the near future
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Affymetrix Technology

The Affymetrix technology uses
photolithographic synthesis of
oligonucleotides on microarrays.

The chip can hold up to 1.6
million features

Two 25-mer oligonucleotides make
up one probe pair of a perfect
match (PM) oligo and a
corresponding mismatch (MM)
oligo (mismatch at base 13)

The probe pairs allow the
quantization and subtraction of
signals caused by non-specific
cross-hybridization.

PM - MM ⇒ indicators of specific
target abundance.
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Affymetrix Technology

The presence of messenger RNA (mRNA) is detected by a
series of probes that differ in only one nucleotide.
Hybridization of fluorescent mRNA to these probes on the
chip is detected by laser scanning of the chip surface.
A probe set consists 11 PM, MM pairs – the expression
level is calculated by synthesizing information from all
such PM/MM probes
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Affymetrix Technology
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RNA–seq

RNA-seq can be used for many different types of experiment

Measuring gene expression

Differential expression

Detecting novel transcripts

Splice junction analysis

De novo assembly

SNP analysis

Allele specific expression

RNA–editing

Studying small/microRNAs

blue: (Nearly) impossible with microarrays
green: Requires special chip
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RNA–seq

General RNA-seq experiment

Wang Z et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics Nature Reviews Genetics 10:57–63
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RNA–seq

General Bioinformatics Workflow to map transcripts from RNA-
seq data
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RNA–seq

Multiple downstream applications...

short-read
aligner

known
isoform/exon-

junctionsequences

genome
sequence

FASTQ
base
caller

reads

uniquely
mapped

reads

multiply
mapped

reads

analysis

differential
expression

novel
transcripts

novel
genes

trans-
splicing

......

Today: mapped reads =⇒ genes/transcript models
Next time, we will talk about analyzing differential expression
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Mapping Reads to Transcriptome

One of the critical steps in an RNA-Seq experiment is that of
mapping the NGS reads to the reference transcriptome. How-
ever, we still do not know all transcripts even for well studied
species such as our own.

RNA-Seq analyses are thus forced to map to the reference
genome as a proxy for the transcriptome.

Mapping to the genome achieves two major objectives of
RNA-Seq experiments:

1 Identification of novel transcripts from the locations of
regions covered in the mapping.

2 Estimation of the abundance of the transcripts from their
depth of coverage in the mapping.
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Splicing (review)

You should know (or review) general concepts of transcription, pre-RNA (near synonym to “heteronuclear

RNA”), spliceosome, splicing
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Splicing (review)

A spliceosome is a
complex of snRNA and
protein subunits

A spliceosome removes
introns from a transcribed
pre-mRNA (hnRNA)
segment.

Schneider-Poetsch et al (2010) Nature Chemical

Biology 6:189–198
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Alternative splicing

Single gene coding for multiple proteins. Each distinct splicing
is known as an isoform or transcript of the gene.

graphic credit: wikipedia
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Alternative splicing

Several different classes of alternative splicing events

Cartegni L et al. (2002) Nature Reviews Genetics 3:285–298



RNA-seq (1)

Peter N.
Robinson

Microarrays

RNA-seq

Alternative
splicing

mapping

cufflinks

Bipartite

Alternative splicing: Biological roles

The different isoforms of a gene can have quite distinct func-
tional roles. Here we see the Drosophila dsx gene.

Males: exons 1–3,5–6 ⇒ transcriptional regulatory protein
required for male development.

Females: exons 1–4 ⇒ transcriptional regulatory protein
required for female development



RNA-seq (1)

Peter N.
Robinson

Microarrays

RNA-seq

Alternative
splicing

mapping

cufflinks

Bipartite

Alternative splicing: Regulation

graphics credit: wikipedia

The intron upstream from exon 4 has a polypyrimidine tract that doesn’t
match the consensus sequence well, so that U2AF proteins bind poorly to it
without assistance from splicing activators. This 3’ splice acceptor site is
therefore not used in males.

In general, we are just beginning to understand the regulatory mechanisms
responsible for alternative splicing
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Alternative splicing: Regulation

The central dogma of molecular biology...is thus slightly
dodgy

Instead: One gene – many polypeptides

Several proteins can be encoded by a single gene, rather
than requiring a separate gene for each, and thus allowing
a more varied proteome from a genome of limited size.

Evolutionary flexibility. (“change just one isoform at a
time”)
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Alternative splicing and RNA-seq

In the rest of this lecture, we will therefore discuss how
one might investigate alternative splicing with RNA-seq

There are by now a multitude of methods and algorithms,
each with particular focuses, strengths, and weaknesses.

Today, we will concentrate on one particular algorithm
that uses some concepts from graph theory to infer the
presence of known and novel isoforms of individual genes
in RNA-seq data
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The big picture

Assuming we can map all reads correctly, we will find that there
are some reads that map within exons, and some that span two
or more exons.

Sultan M, Schulz MH et al. (2008) Science 321:956–960

Two different splice junctions (blue lines) connect either
exon 9 or exon 10 and identify alternative PKM2
transcripts with mutually exclusive exons.
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The big picture: Reference-based
transcriptome assembly

There are two major classes of RNA-seq assembly algorithms

1 Reference-based transcriptome assembly (We will talk
about this today)

2 de novo transcriptome assembly

Major steps:

Map reads to genome

Use annotation of locations and transcripts and their
exons to identify and count reads that

1 map within single exons
2 span two or more exons

Use this information to reconstruct an isoform distribution
for each gene that appears likely given the patterns of
reads (many different algorithms)
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The big picture: Reference-based
transcriptome assembly

Martin JA, Wang Z (2011) Nature Reviews Genetics 12:671–682
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RNA-seq read mapping

RNA-seq read mapping uses the algorithms that you have
learned about in the read-mapping lectures of this course. How-
ever, we additionally must take some particularities of RNA-seq
data into account, including especially the fact that some reads
might not map well to the genome because they “skip” one or
more introns

We will talk about tophat

Trapnell C et al. (2009) Bioinformatics 25:1105-11.

Extension of original algorithm in supplementary material
of Trapnell C et al. (2010) Nat Biotechnol 28:511-5.
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Tophat

We will talk here about the latest version of tophat (version
1.0.7 and above).

Algorithm 1 Find intron-spanning reads

1: Split read S (of length ` nucleotides) into n =
b `k c segments (default: k = 25).

2: Map each of the s1, s2, . . . , sn reads to the genome

separately with bowtie

3: if s1, s2, . . . , sn cannot be mapped contiguously then
4: Mark S as a possibly intron-spanning read

5: end if
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Tophat

When a segment si fails to align because it crosses a splice
junction, but si1 and si+1 are aligned (at positions x and
y), TopHat looks for the donor and acceptor sites for the
junction near x and y .

Must be within k bases downstream of x + k and within k
bases upstream of y : There are thus k possible
exon-exon splice junctions.

k is the segment size (25 nt)
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Tophat

Algorithm 2 Identify splice junctions

1: for each unmappable segment si of possibly intron-spanning
read S do

2: concatenate k bp upstream of si−1 and k bp

downstream si+1

3: Align segment si to the concatenated

sequences with Bowtie.

4: Merge contiguous and spliced segment

alignments for si−1, si , si+1

5: end for
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Tophat

There are many heuristics, bells, and whistles that tophat uses
to perform the final alignment, that also take advantage from
signals from readpairs, and wind up ranking candidate align-
ments according to some biological assumptions, such as for
instance that really long introns are rare. Additionally, in cases
where there are multiple plausible candidate alignments, the
reads are assigned to each of n such alignments with a proba-
bility of 1

n . We will not look at these details further.
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Tophat

cufflinks uses the alignments of tophat (or any alignment, i.e.,

samfile) to estimate the isoform distribution in a sample

In the rest of this lecture, we will examine the graph
algorithms used by cufflinks to do all of this
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Cufflinks

Trapnell C et al. (2010) Transcript assembly and quantifica-
tion by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat Biotechnol 28:511-5.

Probably the best known algorithm for reference-guided
transcriptome assembly
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Cufflinks: Typical data following tophat
analysis

In a typical experiment, there were 215 million fragments,
of which 171 million (79%) mapped to the genome.

46 million of these spanned at least one putative splice
junction (≈ 22%)

In 63 million, only one end of the read could be mapped
(singleton: ≈ 30%)

8 million reads mapped to multiple locations
(multi-mapping fragments: ≈ 4%)
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Cufflinks: Goals of transcript assembly

The assembly algorithm is designed to aim for a parsimonious
explanation of the fragments from the RNA-seq experiment,
i.e.:

1 Every fragment is consistent with at least one assembled
transcript.

2 Every transcript is tiled by reads.

3 The number of transcripts is the smallest required to
satisfy requirement (1)

4 The resulting RNA-Seq models display some desirable
qualities
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Cufflinks: Compatible Reads

Two reads are compatible if their overlap contains the exact
same implied introns (or none). If two reads are not compatible
they are incompatible.

Read A is incompatible with reads B and C

Read B is compatible with read C
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Cufflinks: Compatible Reads

We will now view this set of reads as a directed acyclic graph,
which will first require some explanations.
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Partial Order

Definition

A relation 4 on a set S is called a partial order if it is reflexive
(x 4 x), antisymmetric (if x 4 y and y 4 x then x = y) and
transitive (if x 4 y and y 4 z then x 4 z). A set S together
with a partial ordering 4 is called a partially ordered set or
poset for short and is denoted (S ,4).

Partial orderings are used to give an order to sets that may
not have a natural one.

We use the notation a 2 b for a, b ∈ S if a comes before b

If a 6= b, then we can also write a ≺ b.

≺ is not necessarily “less than”, rather it denotes the
partial ordering
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Partial Order and Comparability

Definition

The elements a and b of a poset (S ,4) are called comparable
if either a 4 b or b 4 a. When a, b ∈ S such that neither are
comparable, we say that they are incomparable.

(R,≤) real numbers and the less-than-equal-to relation:
All pairs of elements are compatible (this is a totally
ordered set)

(Z, divisibility): natural numbers and the relation of
“divisibility”, i.e., m|n: Only some pairs of elements of this
set are comparable
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Partial Order for mapped reads

We now define a partial ordering for the reads. Here, we will
consider only the simple case of single reads and neglect the
more complicated case of paired end reads.

We define compatibility of two reads as mentioned above
based on whether their overlap contains the exact same
implied introns (or none)

If two reads are compatible, they are considered
comparable by our relation 4, otherwise not

If we denote the starting mapped coordinate of a read x as
pos(x), then x 4 y iff pos(x) ≤ pos(y) and x and y are
compatible with one another.
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Partial Order for mapped reads

x1 and y1 are comparable because they are compatible
(they both contain no introns): y1 4 x1 because
pos(y1) ≤ pos(x1)

x2 and y2 are incomparable because their overlap implies
different introns. Thus, we cannot use the relation 4 for
this pair of reads
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Chains and Antichains

Definition

A chain is a set of elements in C ⊆ S such that for every
x , y ∈ C either x 4 y or y 4 x . An antichain is a set of
elements that are pairwise incomparable.
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Posets and DAGs

It is easy to see that posets are equivalent to directed acyclic
graphs (DAGs).

For instance, A 4 B and B 4 C , but A and G are
incomparable with one another.
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Dilworth’s theorem

Theorem (Dilworth)

Let P be a finite partially ordered set. The maximum number
of elements in any antichain of P equals the minimum number
of chains in any partition of P into chains.

In the setting of RNA-seq, this essentially means that the
maximum cardinality of a set of fragments that are
pairwise incompatible is the same as the minimum number
of isoforms needed to explain the reads.

Let’s check this with an example. Keep transitivity in mind!
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Dilworth’s theorem

Maximum cardinality of a set of pairwise incompatible
fragments: 2, e.g., {A,B} or {A,C} or {C ,E}. The set
{A,B,C} is no longer pairwise incompatible because
B 4 C . The set {A,C ,E} is no longer pairwise
incompatible because A 4 C

Minimum number of chains that partition all reads: 2,
e.g., {A 4 D 4 E 4 F 4 G ,B 4 C}. or
{A 4 D 4 E ,B 4 C 4 F 4 G}.
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RNA-seq assembly: Reformulating the
problem

A partition of P into chains yields an assembly because ev-
ery chain is a totally ordered set of compatible fragments
x1, x2, . . . , xl and therefore there is a set of overlapping frag-
ments that connects them.

By Dilworth’s theorem, the problem of finding a minimum
partition P into chains is equivalent to finding a maximum
antichain in P1

In the following, we will show that this problem can be
reformulated in the framework of bipartite graphs, which
we will need to review first

1
Again, an antichain is a set of mutually incompatible fragments.



RNA-seq (1)

Peter N.
Robinson

Microarrays

RNA-seq

Alternative
splicing

mapping

cufflinks

Bipartite

Matchings

Given a graph G = (V ,E ), a matching M in G is a set of
pairwise non-adjacent edges; that is, no two edges share a
common vertex.

A maximal matching is a matching M of a graph G with
the property that if any edge not in M is added to M, it is
no longer a matching

That is, M is maximal if it is not a proper subset of any
other matching in graph G .
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Maximum matchings

A maximum matching (also known as maximum-cardinality
matching) is a matching that contains the largest possible num-
ber of edges.

These matchings are maximal but two of them are not
maximum

These matchings are maximum (and therefore also
maximal)
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Vertex cover

Definition

A vertex cover of a graph G is a set C of vertices such that
each edge of G is incident to at least one vertex in C . The set
C is said to cover the edges of G .

Vertex covers in two graphs
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Minimum Vertex cover

Definition

A minimum vertex cover is a vertex cover of smallest possible
size.

The vertex cover number τ is the size of a minimum
vertex cover.

For the left graph, τ(G ) = 2, for the right graph, τ(G ) = 3
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König’s theorem

Theorem (König)

In a bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex
cover.

Try it!
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Cufflinks, König’s theorem, and Dilworth’s
theorem

Cufflinks exploits the equivalence of König’s theorem and Dil-
worth’s theorem to transform the problem of finding transcripts
into a matching problem in a bipartite graph. We will explain
this and then show how it works using our example graph from
above.

bird’s eye:

A partition of P into chains yields an assembly because
every chain is a totally ordered set of compatible
fragments x1; . . . ; xl and therefore there is a set of
overlapping fragments that connects them.

The problem of finding such chains can be reduced to
finding a maximum matching in an appropriate bipartite
graph, which can be done at a complexity of O(VE ) for a
naive algorithm and O(

√
V E ) for a somewhat more

sophisticated algorithm.
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König vs. Dilworth

Theorem

Dilworth’s theorem is equivalent to König’s theorem

We need to show the the following are equivalent to justify the
cufflinks algorithm:

Theorem (Dilworth)

Let P be a finite partially ordered set. The maximum number
of elements in any antichain of P equals the minimum number
of chains in any partition of P into chains.

Theorem (König)

In a bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex
cover.



RNA-seq (1)

Peter N.
Robinson

Microarrays

RNA-seq

Alternative
splicing

mapping

cufflinks

Bipartite

König vs. Dilworth

Theorem

Dilworth’s theorem is equivalent to König’s theorem

Proof (1): K → D.

Let P be a poset with n elements. We define a bipartite graph
G = (U; V ; E ) where U = V = P, i.e. each partition in the
bipartite graph is equal to P. Two nodes u; v form an edge
(u; v) ∈ E in the graph G iff u ≺ v in P.

see graph next page
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König vs. Dilworth

We want to prove: König (Number of edges in a maximum matching equals the number of vertices in a

minimum vertex cover, see graph on right). ⇒ Dilworth (Minimum number of chains is equal to maximum

number of elements in an antichain, see graph on left)
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König vs. Dilworth

Proof (2): K → D.

By König’s theorem
there exist both a
matching M and a vertex
cover C in G of the same
cardinality.

M: the five red edges

C: the five blue vertices
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König vs. Dilworth

Proof (3): K → D.

Let T ⊂ S be the set of
elements not contained
in C .

C = {A,B,D,F ,G}
T = {C ,E}

Note that T is an antichain in the poset P (why?).
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König vs. Dilworth

Proof (4): K → D.

We now form a partition W of P into chains by declaring u
and v to be in the same chain whenever there is an edge
(u; v) ∈ M. Since C and M have the same size (by König’s
theorem), it follows that the antichain T (of the bipartite
graph) and and the partition W (of the DAG) have the same
size.
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König vs. Dilworth

Since C and M have the same size (König), it follows that
T and W have the same size.

Here: T = {C , E} and W = {(A→ D → E → F → G), (B → C)}
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König vs. Dilworth

Proof: K → D (continued).

Therefore, we have shown that if the matching M and the
vertex cover C have the same size (König), then the minimal
number of chains (W ) in our poset P has the same cardinality
as the number of elements in an antichain of P (Dilworth), and
the proof is finished.

A similar proof shows that Dilworth’s theorem implies
König’s theorem (left as an exercise)

Thus, we have shown that the two theorems are
equivalent!
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Reachability graph

The final ingredient we are missing is a way of finding a max-
imum cover in the bipartite graph, which will be termed the
reachability graph.

We will present a simple algorithm for finding a maximum
cover in a reachability graph, using a simple bipartite
graph to illustrate the algorithm.
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Terminology (1)

The edges of a matching M are
marked bold

v ∈ V is a free vertex, if no
edge from M is incident to v
(i.e, if v is not matched).

Here, a1, b1, a4, b4, a5, and b5
are free.

The next few slides on maximum mapping were adapted from lectures notes by C. Stein.
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Terminology (2)

P is an alternating path if P is
a path in G , and for every pair of
subsequent edges on P it is true
that one of them is in M and
another one is not.

{a1, b1} and {b2, a2, b3} are two
examples of alternating paths,
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Terminology (3)

P is an augmenting path, if P
is an alternating path with a
special property that its start and
end vertex are free.

{a1, b2, a2, b3, a3, b4} is an
augmenting path

a1 and b4 are free vertices because no edge from M (bold edges) is incident to them.
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Maximum matching

The main idea for a simple algorithm to find a maximum match-
ing on bipartite graphs exploits a fact about augmenting paths

Given a matching M and an augmenting path P,
M
′

= M ⊕ P is a matching such that |M ′ | = |M|+ 1.

Here, ⊕ denotes the symmetric difference set operation: everything that belongs to both sets individually,

but doesn’t belong to their intersection. Thus, A⊕ B = (A ∪ B) \ (A ∩ B)

Note that \ denotes set subtraction.
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Proof: every augmenting path P
is alternating and starts and ends
with a free vertex. Therefore, it
must be odd length and must
have one edge more in its subset
of unmatched edges (P \M)
than in its subset of matched
edges (P ∩M).

Consider the augmenting path P =

{(a1, b2), (b2, a2), (a2, b3), (b3, a3), (a3, b4)}
and the matching
M = {(a2, b2), (a3, b3)}

Then M
′

= M ⊕ P =

{(a1, b2), (a2, b3), (a3, b4)}
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The matching M
′

= M ⊕ P =
{(a1, b2), (a2, b3), (a3, b4)}
Clearly, |M ′ | = |M|+ 1.

The operation of replacing the
old matching M by a new one
M
′

= M ⊕ P is called the
augmentation over path P.
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The idea for an algorithm now becomes obvious. Starting with
any matching in a bipartite graph G (e.g., an empty one),
repeatedly find an augmenting path and augment over it, until
there are no augmenting paths left.

Theorem

For a given bipartite graph G , a matching M is maximum if
and only if G has no augmenting paths with respect to M.

Proof sketch.

If there is an augmenting path for a matching M of cardinality
m, then by the above we can find a new matching with
cardinality m + 1.
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Algorithm 3 BIPARTITE-MATCHING(G)

1: M = ∅
2: repeat
3: P = AUGMENTING-PATH(G, M)

4: M = M ⊕ P
5: until P = ∅

We now only need to show how to find an augmenting path in
a bipartite graph.
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Create a new graph by adding a source (s) and a sink (t)
node
Direct all matched edges from B to A, and all unmatched
nodes from A to B. Add directed edges from the source to
all unmatched nodes in A, and from all unmatched nodes
in B to the sink
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Now all the directed paths in G are alternating

A free vertex in B can be reached from a free vertex in A
only via augmenting path.

These paths can be found by performing a
breadth-first-search (BFS) on the modified graph
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Find augmenting path

The algorithm for finding an augmenting path can now be given
as:

Algorithm 4 AUGMENTING-PATH(G, M)

1: Direct unmatched edges A → B and matched edges

B → A
2: Attach source s and sink t to unmatched nodes

3: Run BFS of G and identify a shortest path P
from s to t

4: Return P \ {s, t}
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Let m = |E | (number of edges) and n = |V | (number of
vertices)

BFS is O(m)

A matching can be of size at most n
2 = O(n), and each

step of BIPARTITE-MATCHING adds one edge.

Thus, BIPARTITE-MATCHING has an overall complexity of
O(mn)

The Hopcroft-Karp Algorithm2 improves on the simple
algorithm and achieves a complexity of O(m

√
n)

2
Which we will not cover here
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There are now a number of additional steps
designed to extend and disambiguate the
transcript models

The fraction of mRNAs that contain an exon
– the ”Percent Spliced In” (PSI or Ψ) value –
can be estimated as the ratio of the density of
inclusion reads (i.e. reads per position in
regions supporting the inclusion isoform) to
the sum of the densities of inclusion and
exclusion reads.

The bipartite graph is weighted as to whether
potentially adjacent fragments have similar Ψ
values

We will not discuss this further here
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cufflinks: Summary

Identify incompatible fragments
that must have originated from
distinct mRNA splice forms

Connect compatible fragments in
an overlap graph

Paths through the graph
correspond to mutually compatible
fragments

Minimum path cover →
transcripts

Transcript abundance estimation
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As an example: Cufflinks identifies three isoforms of the
Myc gene

The three isoforms of Myc have distinct expression
dynamics.
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Summary

In this lecture, we have looked at some algorithms used for
mapping RNA-seq reads to the individual isoforms of a
gene

This is a key step towards analyzing alternative splicing

Read mapping algorithms were adapted to take spliced
reads into account (tophat)

A graph algorithm was used to encode our biological
knowledge about splicing (compatible and incompatible
splice patterns) and identify isoforms (cufflinks)

Next week: differential expression analysis with RNA-seq



RNA-seq (1)

Peter N.
Robinson

Microarrays

RNA-seq

Alternative
splicing

mapping

cufflinks

Bipartite

Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading
Trapnell C et al. (2009) TopHat: discovering splice junctions with
RNA-Seq Bioinformatics 25:1105-11.

Trapnell C et al. (2010) Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during cell
differentiation. Nat Biotechnol 28:511-5.

Trapnell C, et al (2012) Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks Nat Protoc 7:562-78:
An extremely useful “How To” (tutorial) that is highly recommended to get
hands on experience with RNA-seq analysis
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