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Today

Gene Expression per RNA-seq

Sources of bias, normalization, and problems
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What is Differential Expression?

Differential Expression

A gene is declared differentially expressed if an observed
difference or change in read counts between two experimental
conditions is statistically significant, i.e. if the difference is
greater than what would be expected just due to random
variation.

Statistical tools for microarrays were based on numerical
intensity values

Statistical tools for RNA-seq instead need to analyze
read-count distributions
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RNA–seq: From Counts to Expression

For many applications, we are interested in measuring the
absolute or relative expression of each mRNA in the cell

Microarrays produced a numerical estimate of the relative
expression of (nearly) all genes across the genome
(although it was usually difficult to distinguish between
the various isoforms of a gene)

How can we do this with RNA-seq? Do read counts
correspond directly to gene expression?
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RNA–seq: Workflow
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RNA–seq: From Counts to Expression

Current RNA-seq protocols use an mRNA fragmentation ap-
proach prior to sequencing to gain sequence coverage of the
whole transcript. Thus, the total number of reads for a given
transcript is proportional to the expression level of the tran-
script multiplied by the length of the transcript.

In other words a long transcript will have more reads
mapping to it compared to a short gene of similar
expression.

Since the power of an experiment is proportional to the
sampling size, there is more power to detect differential
expression for longer genes.

Oshlack A, Wakefield MJ (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol

Direct 4:14.
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RNA–seq: Length Bias

Let X be the measured number of reads in a library
mapping to a specific transcript.

The expected value of X is proportional to the total
number of transcripts N times the length of the gene L

E[X ] ∝ N · L
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Length Normalization

For this reason, most RNA-seq analysis involves some sort of
length normalization. The most commonly used is RPKM.

RPKM: Reads per kilobase transcript per million reads

RPKM(X ) =
109 · C
N · L

(1)

C is the number of mappable reads that fell onto the
gene’s exons
N is the total number of mappable reads in the experiment
L is the total length of the exons in base pairs

Example: 1kb transcript with 2000 alignments in a sample of 10 million reads (out of which 8 million reads

can be mapped) will have RPKM = 109·2000
8×106·1000

= 2×1012

8×109 = 250
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Length Normalization

RPKM: Reads per KB per million reads

RPKM(X ) =
109 · C
N · L

Note that this formula can also be written as

RPKM(X ) =
Reads mapped to transcript

total reads
1,000,000 · transcript length in kb

=
Reads mapped to transcript
total reads

1,000,000 ·
transcript length in bp

1000

=
109 × Reads mapped to transcript

total reads · transcript length in bp
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RPKM: Question

RPKM(X ) =
109 · C
N · L

Question: What are the RPKM-corrected expression
values and why?
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RPKM: Answer

RPKM(X ) =
109 · C
N · L

Note especially normalization for fragment length (transcripts 3 and 4)

Graphic credit: Garber et al. (2011) Nature Methods 8:469–477. Note that the authors here use the related

term FPKM, Fragments per KB per million reads, which is suitable for paired-end reads (we will not cover

the details here).
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RPKM: Another question

RPKM(X ) =
109 · C
N · L

What if now assume that the same gene is sequenced in

two libraries, and the total read count in library 1 was
1

10
of that in library 2? In which library is the gene more
highly expressed?
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Length Normalization

Unfortunately, this kind of length normalization does not solve
all of our problems.

In essence, RPKM and related length normalization
procedures produce an unbiased estimate of the mean of
the gene’s expression

However, they do not compensate for the effects of the
length bias on the variance of our estimate of the gene’s
expression

It is instructive to examine the reasons for this1

1
This was first noted by Oshlack A (2009) Biol Direct 4:14, from whom the following slides are adapted
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RNA–seq: Length Bias

Ability to detect DE is strongly associated with transcript
length for RNA-seq. In contrast, no such trend is observed
for the microarray data

data is binned according to transcript length

percentage of transcripts called differentially expressed using a statistical cut-off is plotted (points)

Oshlack 2009
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RNA–seq: Length Bias

As noted above, the expected value of X is proportional to
the total number of transcripts N times the length of the
gene L

µ = E[X ] = cN · L

c is the proportionality constant.

Assuming the data is distributed as a Poisson random
variable, the variance is equal to the mean.

Var(X ) = E[(X − µ)2] = µ
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RNA–seq: Length Bias

Under these assumptions, it is reasonable to check if the
difference in counts from a particular gene between two
samples of the same library size is significantly different
from zero using a t-test:

T =
D

SE (D)
=

cN1L− cN2L√
cN1L + cN2L

(2)

In the t test, D is the difference in the sample means, and SE(D) is the standard error of D.

Recall that with the t test, the null hypothesis is rejected if |T | > t1−α/2,ν where t1−α/2,ν is the critical

value of the t distribution with ν degrees of freedom
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RNA–seq: Length Bias

It can be shown that the power of the t test depends on
E(D)
SE(D) = δ

δ =
E[D]

SE (D)
=

E[cN1L− cN2L]√
cN1L + cN2L

∝
√
L (3)

Thus, the power of the test is proportional to the square
root of L.

Therefore for a given expression level the test becomes
more significant for longer transcript lengths!

It is simple to show that dividing by gene length (which is
essentially what RPKM does) does not correct this bias2

2
Exercise
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RNA–seq: Differential Expression

Today, we will examine some of the methods that have been
used to assess differential expression in RNAseq data.

Simple(st) case: two-sample comparison without
replicates3

Modeling read counts with a Poisson distribution

Overdispersion and the negative binomial distribution

3
For so called didactic purposes only, do not do this at home!
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Fisher’s exact test

Let us get warm by examining an observational study with no
biological replication. For instance, one sample each is pro-
cessed and sequenced from the brain and the liver. What can
we say about differential expression?

The Fisher’s exact test can be used for RNA-seq data
without replicates, proceeding on a gene-by-gene basis and
organizing the data in a 2× 2 contingency table
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2× 2 contingency table

condition 1 condition 2 Total

Gene x n11 n12 n11 + n12

Remaining genes n21 n22 n21 + n22

Total n11 + n21 n12 + n22 N

The cell counts nki represent the observed read count for
gene x (k = 1) or the remaining genes (k = 2) for
condition i (e.g., i = 1 for brain and i = 2 for liver)

The kth marginal row total is then nk1 + nk2

n1i + n2i is the marginal total for condition i

N is the grand total
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Fisher’s exact test

Fisher’s exact test for RNAseq counts tests the null hypothesis
that the conditions (columns) that the proportion of counts for
some gene x amongst two samples is the same as that of the
remaining genes, i.e., the null hypothesis can be interpreted as
π11

π12
=
π21

π22
, where πki is the true but unknown proportion of

counts in cell ki .

Let us explain how the Fisher’s exact test works. We will
need to examine the binomial and the hypergeometric
distributions
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Fisher’s exact test

The binomial coefficient provides a general way of calculating
the number of ways k objects can be chosen from a set of n
objects. Recall that n! = n× (n− 1)× (n− 2)× . . .× 2× 1 is
the number of ways of arranging n objects in a series.

In order to calculate the number of ways of observing k
“heads” in n coin tosses, we first examine the sequence of
tosses consisting of k “heads” followed by n − k “tails”:

H H H . . . H H T . . . T T T
1 2 3 . . . k − 1 k k + 1 . . . n − 2 n − 1 n
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Fisher’s exact test

Each of the n! rearrangements of the numbers
1, 2, . . . , n defines a different rearrangement of the let-
ters HHH . . .HHTT . . .TT . However, not all of the
rearrangements change the order of the H’s and the T ’s. For
instance, exchanging the first two positions leaves the order
HHH . . .HHTT . . .TT unchanged.

Therefore, to calculate the number of rearrangements that lead
to different orderings of the H’s and the T ’s (e.g.,
HTH . . .HHTT . . .TH), we need to correct for the reorderings
that merely change the H’s or the T ’s among themselves.
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Fisher’s exact test

Noting that there are k! ways of reordering the “heads” and
(n − k)! ways of reordering the “tails,”

it follows that there are
(n
k

)
different ways of rearranging k

“heads” and n − k “tails.” This quantity4 is known as the
binomial coefficient.(

n

k

)
=

n!

(n − k)!k!
(4)

4(n
k

)
should be read as“n choose k”.



RNA-seq (2)

Peter N.
Robinson

RNA-seq

RPKM

Fisher’s exact
test

Poisson

LRT

Negative
Binomial

Fisher’s exact test

Getting back to our RNAseq data, Fisher showed that the prob-
ability of getting a certain set of values in a 2× 2 contingency
table is given by the hypergeometric distribution

condition 1 condition 2 Total

Gene x n11 n12 n11 + n12

Remaining genes n21 n22 n21 + n22

Total n11 + n21 n12 + n22 N

p =

(n11+n12
n11

)(n21+n22
n21

)( n
n11+n21

) (5)
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Fisher’s exact test

p =

(n11+n12
n11

)(n21+n22
n21

)( n
n11+n21

)
This expression can be interpreted based on the total number of ways of
choosing items to obtain the observed distribution of counts. If there are
lots of different ways of obtaining a given count distribution, it is not that
surprising (not that statistically significant) and vice versa

Thus,
(n11+n12

n11

)
is the number of ways of choosing n11 reads for gene x in

condition 1 from the total number of reads for that gene in conditions 1
and 2.(n21+n22

n21

)
is the number of ways of choosing n21 reads for the remaining

genes in condition 1 from the total number of reads for the remaining genes
in conditions 1 and 2.( n
n11+n21

)
is the total number of ways of choosing all the reads for condition

1 from the reads in both conditions.
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Fisher’s exact test

To make a hypothesis test out of this, we need to calculate the
probability of observing some number k or more reads n11 in
order to have a statistical test. In this case, the sum over the
tail of the hypergeometric distribution is known as the Exact
Fisher Test:

p(read count ≥ n11) =

n11+n12∑
k=n11

(k+n12
k

)(n21+n22
n21

)( n
k+n21

) (6)

We actually need to calculate a two-sided Fisher exact test
unless we are testing explicitly for overexpression in one of
the two conditions

We would thus add the probability for the other upper tail5

5
There are other methods that we will not mention here.
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Problems

The fundamental problem with generalizing results gathered
from unreplicated data is a complete lack of knowledge about
biological variation. Without an estimate of variability within
the groups, there is no sound statistical basis for inference of
differences between the groups.

Ex uno disce omnes



RNA-seq (2)

Peter N.
Robinson

RNA-seq

RPKM

Fisher’s exact
test

Poisson

LRT

Negative
Binomial

Outline

1 RNA-seq

2 RPKM and Length Bias

3 Fisher’s exact test

4 Poisson

5 Likelihood Ratio Test

6 Negative Binomial



RNA-seq (2)

Peter N.
Robinson

RNA-seq

RPKM

Fisher’s exact
test

Poisson

LRT

Negative
Binomial

Poisson Model

In this lecture we will begin to explore some of the issues
surrounding more realistic models of differential expression in
RNAseq data. We will now examine how to perform an analysis
for differential expression on the basis of a Poisson model

Imagine we have count data for some list of genes
g1, g2, . . . with technical and biological replicates
corresponding to two conditions we want to compare

We will let X ∼ Poisson(λ) be a random variable
representing the number of reads falling in g
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Question...

Why might it be appropriate to model read counts as a Poisson
process?
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Justification of Poisson for RNA seq

The binomial distribution works when we have a fixed number
of events n, each with a constant probability of success p.

e.g., a series of n = 10
coin flips, each of which
has a probability of p = 5
of heads

The binomial distribution
gives us the probability of
observing k heads

p(X = k) =

(
n

k

)
pk(1− p)n−k

Event: An RNAseq read “lands” in a given gene (success) or not (failure)
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Justification of Poisson for RNA seq

Imagine we don’t know the number n of trials that will happen.
Instead, we only know the average number of successes per
interval.

Define a number λ = np as the average number of
successes per interval.

Thus p =
λ

n
Note that in contrast to a binomial situation, we also do
not know how many times success did not happen (how
many trials there were)
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Justification of Poisson for RNA seq

Now let’s substitute p =
λ

n
into the binomial distribution, and

take the limit as n goes to infinity

lim
n→∞

p(X = k) = lim
n→∞

(n
k

)
pk (1− p)n−k

= lim
n→∞

n!

k!(n − k)!

(
λ

n

)k (
1−

λ

n

)n−k

=

(
λk

k!

)
lim

n→∞

n!

(n − k)!

1

nk

(
1−

λ

n

)n (
1−

λ

n

)−k
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Justification of Poisson for RNA seq

Let’s look closer at the limit, term by term

lim
n→∞

n!

(n − k)!

1

nk
= lim

n→∞

n(n − 1) . . . (n − k)(n − k − 1) . . . (2)(1)

(n − k)(n − k − 1) . . . (2)(1)

1

nk

= lim
n→∞

n(n − 1) . . . (n − k + 1)

nk

= lim
n→∞

(n)

n

(n − 1)

n
· · ·

(n − k + 1)

n
= 1

The final step follows from the fact that

limn→∞
n − j

n
= 1 for any fixed value of j .
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Justification of Poisson for RNA seq

Continuing with the middle term limn→∞

(
1− λ

n

)n

Recalling that ex can also be defined as

ex = limn→∞

(
1− x

n

)n
, we see that the above limit is

equal to e−λ
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Justification of Poisson for RNA seq

Continuing with the final term

(
1− λ

n

)−k

lim
n→∞

(
1−

λ

n

)−k

= (1)−k = 1

Putting everything together, we have

lim
n→∞

n!

(n − k)!

1

nk

(
1−

λ

n

)n (
1−

λ

n

)−k

= 1 · e−λ · 1 = e−λ
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Justification of Poisson for RNA seq

We can now see the familiar Poisson distribution

p(X = k) =

(
λk

k!

)
lim

n→∞

n!

(n − k)!

1

nk

(
1−

λ

n

)n (
1−

λ

n

)−k

=

(
λk

k!

)
e−λ

=
λke−λ

k!
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Poisson (mean = variance)
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For X ∼ Poisson(λ), both the mean and the variance are
equal to λ
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Likelihood ratio test

The likelihood ratio test is a statistical test that is used by
many RNAseq algorithms to assess differential expression. It
compares the likelihood of the data assuming no differential
expression (null model) against the likelihood of the data as-
suming differential expression (alternative model).

D = −2 log
likelihood of null model

likelihood of alternative model
(7)

It can be shown that D follows a χ2 distribution, and this
can be used to calculate a p value

We will explain the LRT using an example from football
and then show how it can be applied to RNAseq data



RNA-seq (2)

Peter N.
Robinson

RNA-seq

RPKM

Fisher’s exact
test

Poisson

LRT

Negative
Binomial

Likelihood ratio test

Let’s say we are interesting in the average number of goals per
game in World Cup football matches. Our null hypothesis is
that there are three goals per game.
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Goals per Game: MLE

We first decide to model goals per game as a Poisson distribu-
tion and to calculate the Maximum Likelihood Estimate (MLE)
of this quantity

Goals Frequency
0 30
1 79
2 99
3 67
4 61
5 24
6 11
7 6
8 2
9 1
10+ 0
Total 380

Likelihood: View a probability distribution as a
function of the parameters given a set of
observed data

L(Θ|X ) =
N∏
i=1

Poisson(xi , λ)

Goal of MLE: find the value of λ that
maximizes this expression for the data we have
observed
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Goals per Game: MLE

L(Θ|X ) =
N∏
i=1

Poisson(xi , λ)

=
N∏
i=1

e−λλxi

xi !

=
e−Nλλ

∑N
i=1 xi∏N

i=1 xi !

Note we generally maximize the log likelihood, because it is usually easier

to calculate and identifies the same maximum because of the monotonicity

of the logarithm.

logL(Θ|X ) = −Nλ+
N∑
i=1

xi log λ−
N∑
i=1

log xi !
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Goals per Game: MLE

To find the max, we take the first derivative with respect to λ
and set equal to zero.

d

dλ
logL(Θ|X ) = −N +

∑N
i=1 xi
λ

− 0

This reassuringly leads to

λ̂ =

∑N
i=1 xi
N

= x (8)
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Goals per Game: MLE

Our MLE for the number of goals per game is then simply

λ̂ =

∑N
i=1 xi
N

=

∑380
i=1 xi
380

=
975

380
= 2.57
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λ̂ = 2.57

The maximum likelihood estimate maximizes the likelihood of the data
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Likelihood Ratio Test

Evaluate the log-Likelihood under H0

Evaluate the maximum log-Likelihood under Ha

Any terms not involving the parameter (here: λ) can be
ignored

Under null hypothesis (and large samples), the following
statistic is approximately χ2 with 1 degree of freedom
(number of constraints under H0)

LRT = −2
[
logL(θ0, x)− logL(θ̂, x)

]
(9)
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LRT: Goals per game

Let’s say that our null hypothesis is that the average number
of goals per game is 3, i.e., λ0 = 3, and the executives of a
private network will only get their performance bonus from the
advertisers if this is true during the cup, because games with
less or more goals are considered boring by many viewers.

Under the null, we have:

H0 : logL(λ0|X ) = −380λ0 +
380∑
i=1

xi log λ0 −
380∑
i=1

xi ! (10)

The alternative:

Ha : logL(λ̂|X ) = −380λ̂+
380∑
i=1

xi log λ̂−
380∑
i=1

xi ! (11)
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LRT: Goals per game

To calculate the LRT, note that we can ignore the term∑380
i=1 xi !

Recall λ0 = 3 and λ̂ = 2.57

logL(λ0|X ) = −380× 3 + 975× log 3 = −68.85

logL(λ̂|X ) = −380× 2.57 + 975× log 2.57 = −56.29

Our test statistic is thus

LRT = −2 [−68.85− (−56.29)] = 25.12
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LRT: Goals per game

Finally, we compare the result from the LRT with the critical
value for the χ2 distribution with one degree of freedom

25.12� χ2
0.05,1 = 3.84

Thus, the result of the LRT is clearly significant at
α = 0.05

We can reject the null hypothesis that the number of goals
per game is 3

No bonus this year...
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LRT: RNAseq

Marioni et al. use the LRT to investigate RNAseq samples for
differential expression between two conditions A and B
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LRT: RNAseq

xijk : number of reads mapped to gene j for the kth lane of
data from sample i

Then we can assume that x ∼ Poisson(λijk)

λijk = cikνijk represents the (unknown) mean of the
Poisson distribution, where cik represents the total rate at
which lane k of sample i produces reads and νijk
represents the rate at which reads map to gene j (in lane
k of sample i) relative to other genes.

Note that
∑

j ′ νij ′k = 1.
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LRT: RNAseq

The null hypothesis of no differential expression
corresponds to νijk = νj for gene j in all samples

The alternative hypothesis corresponds to νijk = νAj for

samples in group A, and νBj for samples in group B with

νAj 6= νBj .
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LRT: RNAseq

Under the null, we have:

H0 : logL(λ0|X ) = −Nλ0 +
n∑

i=1

xi log λ0 −
n∑

i=1

xi ! (12)

The alternative:

Ha : logL(λ̂|X ) = −NAλ̂A−NB λ̂B +

na∑
i=1

xi log λ̂A +

nb∑
i=1

xi log λ̂B−
n∑

i=1

xi ! (13)

Where the total count for gene i in sample A is NA and
NA + NB = N, and the total number of samples in A and
B is given by na and nb, with the total number of samples
n = na + nb.
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LRT: RNAseq

The authors then used a LRT and calculated p values for
each gene based on a χ2 distribution with one degree of
freedom, quite analogous to the football example

By comparing five lanes each of liver-versus-kidney
samples. At an FDR of 0.1%, they identified 11,493 genes
as differentially expressed between the samples (94% of
these had an estimated absolute log2-fold change > 0.5;
71% > 1).

Marioni JC et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene

expression arrays. Genome Res. 18:1509-17.
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LRT: RNAseq

Newer methods have adapted the LRT or variants thereof
to examine the differential expression of the individual
isoforms of a gene
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Outline

1 RNA-seq

2 RPKM and Length Bias

3 Fisher’s exact test

4 Poisson

5 Likelihood Ratio Test

6 Negative Binomial
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Problems with Poisson

Many studies have shown that the variance grows faster than
the mean in RNAseq data. This is known as overdispersion.

Mean count vs variance of RNA seq data. Orange line:
the fitted observed curve. Purple: the variance implied by
the Poisson distribution.

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106.
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Negative Binomial

The negative binomial distribution can be used as an alternative
to the Poisson distribution. It is especially useful for discrete
data over an unbounded positive range whose sample variance
exceeds the sample mean.

The negative binomial has two parameters, the mean
p ∈ ]0, 1[ and r ∈ Z, where p is the probability of a single
success and r − 1 is the total number of successes and k
the total number of failures in x + r − 1 trials.

NB(K = k) =

(
k + r − 1

r − 1

)
pr (1− p)k (14)
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Negative Binomial

The negative binomial distribution NB(r,p)
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What happens if our estimate of the variance
is too low?

For simplicity’s sake, let us consider this question using the t
distribution

t =
x − µ0

s/
√
n

(15)

Here, x is the sample mean, µ0 represents the null
hypothesis that the population mean is equal to a
specified value µ0, s is the sample standard deviation, and
n is the sample size
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What happens if our estimate of the variance
is too low?

empirical cumulative distribution functions (ECDFs) for P values from a
comparison of two technical replicates
No genes are truly differentially expressed, and the ECDF curves (blue)
should remain below the diagonal (gray).
Top row: DESeq (Negative binomial plus flexible data-driven relationships
between mean and variance); middle row edgeR (Negative
binomial);bottom row: Poisson-based χ2 test
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Summary

Many issues are to be taken into account to determine
expression levels and differential expression for RNA-seq
data

There are major bias issues related to transcript length
and other factors6

Many methods have been developed to assess differential
expression in RNAseq data. Note that many of the
assumptions that have been applied successfully previously
for microarray data to not work well with RNA-seq data

6
library size is important but was not covered here.
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Finally

Email: peter.robinson@charite.de

Office hours by appointment

Further reading
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