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Variant Calling

Variant calling is an important procedure for whole-exome and
whole-genome sequencing, and for some experiments also for
RNA-seq.

Two major classes of variant

Single-nucleotide variant (SNV)

Structural variant

In this lecture, we will discuss issues and algorithms of SNV
calling
In the second half of the lecture, we will explain some of the
issues and algorithms surrounding variant annotation.
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Variant Calling

Genotyping: figuring out collection of alleles in an individual

?
?
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Reads

Reference
Genome

SNP (pronounced: ”Snip”) stands for Single Nucleotide Polymorphism, and refers to a position in the

genome at which two different bases occur with a frequency of at least 1% in the population. SNV

(pronounced “Sniv”) stands for Single Nucleotide Variant, and refers to a position in an individual sequence

that differs from the reference genome.
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Germline variants

Ignoring for the moment everything but SNVs, our goal is to
characterize each column of the sequence alignment. We will
symbolize the reference base as a and the alternate base as b.
There are then only three possible outcomes:

Homozygous wildtype (aa)

Heterozygous (ab)

Homozygous alternate (bb).
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Germline variants

Thus, if the true genotype is homozygous reference (a,a), and
we observe k reference bases at such a position, then the re-
maining n − k bases must represent sequencing errors, and
analogously for homozygous variant (b,b), positions.

True Genotype Number of errors

a,a n − k
b,b k

If the true genotype is heterozygous, then we can approximate
the probability of the genotype as

dbinom(n, k, p = 0.5) =

(
n

k

)
pk(1− p)n−k =

(
n

k

)
1

2n
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A naive algorithm

Early NGS studies basically filtered base calls according to qual-
ity and then used a frequency filter.
Typically, a quality filter of PHRED Q20 was used (i.e., prob-
ability of error 1% ). Then, the following frequency thresholds
were used according to the frequency of the non-ref base, f (b):

f (b) genotype call

[0, 0.2) homozygous reference
[0.2, 0.8] heterozygous
(0.8, 1] homozygous variant
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A naive algorithm

The frequency heuristic works reasonably well if the sequenc-
ing depth is high, so that the probability of a heterozygous
nucleotide falling outside of the 20% – 80% region is low.

Problems with frequency heuristic:

For low sequencing depth, leads to undercalling of
heterozygous genotypes

Use of quality threshold leads to loss of information on
individual read/base qualities

Does not provide a measure of confidence in the call
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A naive algorithm

For these reasons, a number of probabilistic methods have been
developed.
We will discuss two of them and provide some algorithmic
background.

MAQ: An early algorithm.

SNVmix: A more flexible Bayesian algorithm

The MAQ SNV calling algorithm makes use of the MAP
formalism, which will be explained in the following.
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Germline variants

Read mapping ⇒ aligned columns of nucleotides with:

1 mapping quality for each read

2 base call quality for each sequenced nucleotide

3 A stack of nucleotides

We can use this information to improve accuracy of vari-
ant calling.

k wildtype nucleotides a

n − k nucleotides b

a, b ∈ {a, c , g , t} and
a 6= b
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Bayes Theorem

Bayes’ theorem follows from the definition of the conditional
probability and relates the conditional probability P(A|B) to
P(B|A) for two events A and B such that P(B) 6= 0:

P(A|B) =
P(B|A) · P(A)

P(B)

posterior

likelihood

prior

normalization constant
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Bayes Theorem

Bayes’ theorem is often used for a set of n mutually exclusive
events E1,E2, . . . ,En such that

∑
i P(Ei ) = 1. Then, we have

P(Ei |B) =
P(B|Ei )P(Ei )∑
i P(B|Ei )P(Ei )

. (1)

This form of Bayes’ theorem makes it clear why
P(B) =

∑
i P(B|Ei )P(Ei ) is called the normalization

constant, because it forces the sum of all P(Ei |B) to be
equal to one, thus making P(·|B) a real probability
measure
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Bayes Theorem

In the context of bioinformatics, Bayesian inference is often
used to identify the most likely model: For instance, we
observe a DNA sequence and would like to know if it is a gene
(M1) or not (M2).

Often, the model is symbolized by M and the observed data
by D. Then, Bayes’ theorem can be given as:

P(M1|D) =
P(D|M1)P(M1)

P(D|M1)P(M1) + P(D|M2)P(M2)
(2)
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maximum a posteriori (MAP)

In Bayesian statistics, maximum a posteriori (MAP) estimation
is often used to generate an estimate of the maximum value of
a probability distribution.

That is, if x is used to refer to the data (x can be an arbitrary
expression), and θ is used to refer to the parameters of a
model, then Bayes’ law states that:

P(θ|x) =
P(x |θ)P(θ)

P(x)
(3)
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maximum a posteriori (MAP)

The term P(θ|x) is referred to as the posterior probability, and
specifies the probability of the parameters θ given the observed
data x . The denominator on the right-hand side can be re-
garded as a normalizing constant that does not depend on θ,
and so it can be disregarded for the maximization of θ.

The MAP estimate of θ is defined as:

θ̂ = arg max
θ

P(θ|x) = arg max
θ

P(x |θ)P(θ) (4)
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maximum a posteriori (MAP)

One important issue about MAP estimation procedures (that
we will not discuss further here), is that they tend to have the
disadvantage that they “get stuck” in local maxima without
being able to offer a guarantee of finding the global maximum.

θ

P(θ|x)

MAP

Local MAP
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MAQ: Mapping

One of the first widely used read mappers and variant callers

Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing
reads and calling variants using mapping quality scores
Genome Research 18:1851–1858

MAQ uses a number of interesting heuristics for read
mapping and variant calling

MAQ calls the genotype that maximizes the posterior
probability
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MAQ

index seed pairs of reference and
of reads and store in look up
table

Maq indexes the reads in batches
and treats substrings of the
reference as queries

Trapnell C, Salzberg SL (2009) How to map billions of short

reads onto genomes. Nat Biotechnol 27:455-7.
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MAQ

We will not review the entire MAQ mapping algorithm, but just
those parts that are relevant to the variant calling process

The Mapping Quality for the assigned alignment of a read s
is denoted as Qs , the PHRED-scaled probability that the read
alignment is wrong.

Qs = −10 log10 Pr[read is wrongly mapped]

For example Qs = 30 implies there is a 1:1000 probability that
the read s has been wrongly mapped, Qs = 20 implies a 1:100
probability, and so on.
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FASTQ and PHRED-like Quality Scores

Recall from lecture #1:

Illumina sequences are reported in FASTQ format.

@My-Illu:6:73:941:1973#0/1

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

1 Read identifier

2 sequence reported by the machine

3 ’+’ (can optionally include a sequence description)

4 ASCII encoded base quality scores
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PHRED Quality Scores

The PHRED quality score is defined as

QPHRED = −10 log10 p

where p is the probability that the corresponding base call is
wrong.

The PHRED quality score is nothing more than a simple
transformation.

QPHRED p Accuracy

10 10−1 90%
20 10−2 99%
30 10−3 99.9%
40 10−4 99.99%
50 10−5 99.999%

Consult slides for lecture # 1 for more details.
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MAQ: Mapping quality

We consider the probability that a read z comes from position
u of a reference sequence R. Let {MM} refer to the set of
mismatched positions in the read.

p(z |R, u) =
∏

i∈{MM}

10−
qi
10 = 10−

∑
i qi

10

That is, the probability that a read z comes from position u of
reference sequence R is modeled as the product of the PHRED
quality scores for each of the bases that are mismatched in the
alignment.
For instance, if the alignment at position u has one mismatch
with PHRED base quality 20 and one with PHRED quality 10,
then

p(z |R, u) = 10−
20+10

10 = 10−3 = 0.001
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MAQ: Mapping/base call quality

We now calculate the posterior probability of the mapping at
position u, ps(u|R, z) using Bayes law

ps(u|R, z) =
p(z |R, u)p(u|R)∑
v p(z |R, v)p(v |R)

MAQ actually uses various heuristics to calculate the
probability the mapping quality of read z , resulting in a
Phred-scaled score qz for the probability that the read is
wrongly mapped

MAQ then redefines base qualities are redefined as the
minimum of base/mapping quality:

qi = min(qi , qz)
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MAQ: Base/mapping quality

?
?

G
A
G
G

Sequenced
Genome

Reads

Reference
Genome

MAQ then uses maximum a posteriori methodology to identify
the genotype that maximizes the probabilities

p(< a, a > |D): homozygous ref

p(< a, b > |D): heterozygous

p(< b, b > |D): homozygous alt

Where a refers to the reference base, b to the alternate base,
and D to the data (the alignment column)
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MAQ: Consensus Genotype Calling

MAQ uses the base quality values to call the most likely
genotype. We assume we have a column of an alignment with

k references bases (a)

n − k alternate bases (b)1

True Genotype # errors Cond. Prob. of Genotype2

a,a n − k αn,n−k
b,b k αn,k

a,b ?
(n
k

)
1
2n

1
Any other bases are ignored as being probably sequencing errors.

2
We will explain α shortly.
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MAQ: Consensus Genotype Calling

The goal is now to decide which of the three possible geno-
types has the highest posterior probability given the data (the
mapping and alignment): p(g |D).

MAQ now assumes the prior for the genotypes is

P(〈a, a〉) = (1− r)/2

P(〈b, b〉) = (1− r)/2

P(〈a, b〉) = r

Here, r is the probability of observing a heterozygous genotype.
MAQ uses r = 0.001 for new SNPs, and 0.2 for known SNPs,
but site-specific values for r could also be used.
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MAQ: Consensus Genotype Calling

MAQ thus calls the genotypes as

ĝ = arg max
g

p(g |D)

Here, the genotype g ∈ (〈a, a〉, 〈a, b〉, 〈b, b〉) with the
maximum posterior probability is sought. The quality of this
genotype call can then be calculated as

Qg = −10 log10[1− P(ĝ |D)]

Qg is then the reported PHRED score for the variant call.

Note that 1− P(ĝ |D) is the calculated probability that
the genotype call is wrong.
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MAQ: Consensus Genotype Calling

We now need a way of calculating αn,k , the probability of
observing k errors in n nucleotides in the alignment. If we
assume that error rates arise independently, and error rates are
identical for all bases, then we can use a binomial distribution

dbinom(n, k , p = ε) =

(
n

k

)
εk(1− ε)n−k

For instance, the probability of observing 2 erroneous
nucleotides in 20, if the per read error rate is ε = 0.01 can be
calculated in R as

> dbinom(2,20,0.01)

[1] 0.01585576



Variant
Calling and
Annotation

Peter N
Robinson

MAQ: Consensus Genotype Calling

In practice, MAQ errors are correlated and are not identical for
each base in the alignment. Therefore, MAQ does not use a
binomial distribution, but a heuristic that reflects the
probabilities of observing an alignment with the given pattern
of per base error probabilities.

αn,k = c ′n,k

k−1∏
i=0

εθ
i

i+1

Here, εi is the ithsmallest base error probability for the k
observed errors, c ′n,k is a constant and θ is a parameter that
controls the dependency of errors.
This equation reflects the base errors. We will not go into further detail, but if desired see the Supplemental

material of the MAQ paper.
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MAQ: Consensus Genotype Calling

With all of this, we can now call the posterior probabilities of
the three genotypes given the data D, that is a column with n
aligned nucleotides and quality scores of which k correspond to
the reference a and n − k to a variant nucleotide b.

p(G = 〈a, a〉|D) ∝ p(D|G = 〈a, a〉)p(G = 〈a, a〉)
∝ αn,k · (1− r)/2

p(G = 〈b, b〉|D) ∝ p(D|G = 〈b, b〉)p(G = 〈b, b〉)
∝ αn,n−k · (1− r)/2

p(G = 〈a, b〉|D) ∝ p(D|G = 〈a, b〉)p(G = 〈a, b〉)

∝
(
n

k

)
1

2n
· r
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MAQ: Consensus Genotype Calling

Finally, the genotype with the highest posterior probability is
chosen

ĝ = arg max
g∈(〈a,a〉,〈a,b〉,〈b,b〉)

p(g |D)

The probability of this genotype is used as a measure of
confidence in the call.
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What have we learned?

The MAQ algorithm is typical for many in genomics in that
a well known statistical or algorithmic framework is used with
a number of heuristics that deliver reasonable values for the
parameters needed for the framework to work.

Major aspects of MAQ SNV calling algorithm

Integrates mapping and per base quality scores

Bayesian (MAP) framework to integrate observations and
priors on genotypes

Provides estimation of reliability of genotype call.
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Expectation Maximization (EM)

We will discuss how EM is used for mixture distributions. For
ease of presentation, we will discuss in detail a mixture of Gaus-
sians, but the principles are the same for other probability dis-
tributions

The basic framework is that we assume that a data point yj is
produced as follows

First, choose one of i ∈ {1, .., I} components that
produces the measurement

Then, according to the parameters of component C = i ,
the actual measurement is generated

This is known as a mixture distribution, and the corresponding
probability density function (pdf) is defined as

p(yj |θ) =
I∑

i=1

αip(yj |C = i ,βi ) (5)
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Expectation Maximization (EM)

Note that in this notation, θ comprises both the weight param-
eters for the probability of one of the I components generating
the data, as well as the various parameters for each of the com-
ponents, βi (where in general βi can be a vector of parameters)

Of course,
∑I

i=1 αi = 1

The parameters βi are associated with the PDF of
component i .

We will now show how to perform maximum likelihood
estimation using the Expectation Maximization (EM)
framework to find values for the parameters θ that maximize
the probability of the data. This involves maximization of the
log-likelihood for θ.

log L(θ) = log p(y|θ) (6)
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Expectation Maximization (EM)

We can flesh out the formula as follows

log L(θ) = log p(y|θ)

= log


J∏

j=1

p(yj |θ)


=

J∑
j=1

log p(yj |θ)

=
J∑

j=1

log

{
I∑

i=1

αip(yj |C = i ,βi )

}

Since the log is outside the sum in the last expression,
there is no analytic (closed form) optimization.
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Expectation Maximization (EM)

The EM algorithm is essentially like a pushme-pullyou algorithm
that goes back and forth between

find an estimate for the likelihood function

maximizing the whole term
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Expectation Maximization (EM)

If there is time in the practical session, I will explain the deriva-
tion of the EM method and show in detail how the maximiza-
tion expressions are derived for a simple distribution – mixture
of Gaussians. For today, I will show only a high level summary.
For the practical, you will be expected to implement a simpli-
fied version of EM – known as gene counting (will explain at
end of this lecture)
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Expectation Maximization (EM)

The EM algorithm will be explained using a mixture of Gaus-
sians (SNVMix uses some slightly less familiar distributions).
Recall the form of a multivariate Gaussian distribution for a
k-dimensional vector x = [x1, x2, . . . , xk ]:

x ∼ N (µ,Σ) (7)

i.e. the probability density function is

f (x1, x2, . . . , xk) =
1

(2π)k/2 |Σ|1/2
e−

1
2

(x−µ)T Σ−1(x−µ) (8)
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Expectation Maximization (EM)

We thus wish to estimate the parameters for a mixture of
Gaussians. We need to estimate both the mixture param-
eters π1, π2, . . . , πc with

∑c
i=1 πi = 1, but also the means

and variances for each of the individual Gaussian distributions,
µ1, µ2, . . . , µc , and Σ1,Σ2, . . . ,Σc .

We thus want to maximize the log likelihood given by

L(θ|x1, x2, . . . , xn) = log
n∏

i=1

c∑
k=1

πk f (xi |µk ,Σk) (9)

or equivalently

L(θ|x1, x2, . . . , xn) =
n∑

i=1

log
c∑

k=1

πk f (xi |µk ,Σk) (10)
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Expectation Maximization (EM)

We can now calculate the probability that a particular data
point xj belongs to a particular component k

We write the posterior probability that an observation xj
belongs to component k as

τ̂jk =
f (xj |µk ,Σk)π̂k∑c
i=1 f (xj |µi ,Σi )π̂i

(11)

The posterior probability τ̂jk is unknown but can be easily
estimated if we use the current values of the parameters
for the Gaussians.

τ̂jk is thus an estimate for the probability that observation
j was generated by component k given the data and
current parameter estimates

This is the Expectation step of the EM algorithm
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Expectation Maximization (EM)

Given our current estimates of the component membership for
each of the datapoints, we can maximize the values of the
mixture parameters as well as of the Gaussians by setting their
first derivative to zero etc (individual steps not shown here).
This leads to the following

π̂k =
1

n

n∑
i=1

τ̂ik (12)

µ̂k =
1

n

n∑
i=1

τ̂ikxi
π̂k

(13)

Σ̂k =
1

n

n∑
i=1

τ̂ik (xi − µ̂k) (xi − µ̂k)T

π̂k
(14)

This is the Maximization step of the EM algorithm



Variant
Calling and
Annotation

Peter N
Robinson

Expectation Maximization (EM)

Thus, the individual steps of the EM algorithm are thus

1 Initial component parameters (with a reasonable guess)

2 For each data point, calculate posterior probability of
membership to each component using the current
parameter values

3 Then, based on these estimates, maximize the log
likelihood of the parameters given the data

4 Repeat until convergence3

3and hope you have not landed in a local maximum.
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SNVMix

We will now discuss an algorithm called SNVMix, that uses the
EM framework to estimate optimal parameters for calling SNPs
in a Bayesian framework.

This algorithm was first described here:
Shah SP et al. (2009) Mutational evolution in a lobular
breast tumor profiled at single nucleotide resolution.
Nature 461:809-13.

an improved version (which we will not discuss) was later
presented here:
Goya R et al. (2010) SNVMix: predicting single nucleotide
variants from next-generation sequencing of tumors.
Bioinformatics 26:730-6.
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SNVMix: Model specification

The core if the model is a specification of the genotypes and the
conditional probabilities of the observed distribution of alleles
– similar to MAQ.

Let Gi = k , k ∈ {〈a, a〉 , 〈a, b〉 , 〈b, b〉} be a multinomial
random variable representing the genotype at nucleotide
position i (a= ref, b is non-ref).

Let the observed allele frequency Xi = [ai , bi ]
T , i.e., a

vector of counts of the reference and non-reference alleles
at position i

Then Ni = ai + bi is the observed read depth at position i .
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SNVMix: Model specification

The central idea is that we assume the allele counts are gener-
ated by a class conditional density

Thus
Xi ∼ Binom(ai |µk ,Ni ) (15)

The probability of the observed read counts (number of ai
bases amongst all Ni bases at position i) is thus conditioned on
the underlying genotype Gi = k , and µk is the corresponding
parameter of a Binomial distribution for genotype k.



Variant
Calling and
Annotation

Peter N
Robinson

SNVMix: Model specification

If we actually knew the genotype, then it is simplicissimo to
calculate the probability of the allele counts using the binomial
distribution.

Thus

P(Xi ) = Binom(ai |µk ,Ni ) =

(
Ni

ai

)
µaik (1− µk)Ni−ak (16)

Intuitively, we would expect the values of µaa to be close to 1,
those for µab to be close to 0.5 and those for µbb to be near
zero. However, we do not know the exact values for real data,
which may depend on things such as the sequencing error rate4.

4
And for cancer data, on the relative mixture of normal and cancerous tissue in a biopsy.
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SNVMix: Model specification

The prior probability of observing a genotype k at any posi-
tion of the sequenced genome is represented as a multinomial
variable π.

0 ≤ πk ≤ 1, ∀k∑3
k=1 πk = 1

Note that in general we will expect the values of π to be
highly skewed towards observing homozygous reference
bases (since most genomic positions are not variant in any
one individual)

SNVMix is thus a classic generative mixture model to
explain the observed data.
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SNVMix: Model specification

The marginal distribution of Xi (in which we have marginalized
– removed – the influence of the actual genotype) can then be
calculated as the convex combination of the class conditional
Binomial densities, weighted by the multinomial π:

p(Xi ) =
3∑

k=1

πk

(
Ni

ai

)
µaik (1− µk)Ni−ak (17)

Again, the sum is taken over k representing the three
genotypes aa, ab, and bb.
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SNVMix: Model specification

We can then use this equation to calculate the log likelihood
of our entire dataset, which comprises positions 1 . . .T .

log p(X1:T |µ1:K , π) =
T∑
i=1

log
3∑

k=1

πk

(
Ni

ai

)
µaik (1− µk)Ni−ak

(18)
Our problem is that the model parameters θ = (π, µ) are not
known. If the true genotype were somehow known, we could
simply calculate them from the training data. But, instead, we
will learn (estimate) the parameters from data by using
maximum a posteriori (MAP) expectation maximization (EM).
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SNVMix: Model specification

Assuming we have solved for the parameters (we will get to that
shortly), then we can easily calculate the posterior probability
of any genotype using Bayes rule

p(Gi = k |X1:N , π, µk) =
πkBinom(Xi |µk ,Ni )∑3
j=1 πjBinom(Xi |µj ,Ni )

(19)

For notational simplicity, we will denote p(Gi = k|X1:N , π, µk)
as γi (k), the marginal probability of the genotype for position i
given all the data and the model parameters.
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SNVMix: Prior Distributions

Bayesian mixture models use hyperparameters, i.e., parameters
of a prior distribution; the term is used to distinguish them from
parameters of the model used for the final analysis. We will use
two underlying distributions to calculate these hyperparameters
for SNVMix.

π ∼ Dirichlet(π|δ)

µ ∼ Beta(µk |αk , βk)
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Beta distribution (review)

Beta distribution: A family of continuous distributions defined
on [0, 1] and parametrized by two positive shape parameters, α
and β

p(x) =
1

B(α, β)
·xα−1 (1− x)β−1

here, x ∈ [0, 1], and

B(α, β) =
Γ(α + β)

Γ(α) · Γ(β)

where Γ is the Gamma function
(extension of factorial). 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

beta distribution

x

pd
f

α=β=0.5
α=5, β=1
α=1, β=3
α=β=2
α=2, β=5
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Beta distribution

Important in the current context is that the Beta distribution
is the conjugate prior to the binomial distribution.

That is, we can express our prior belief about the value of
the µk parameter of the binomial distribution for read
counts using a Beta distribution

We say that µk is conjugately distributed according to a
Beta distribution: µk ∼ Beta(µk |αk , βk).

This requires us to express our prior belief about µaa, µab,
and µbb by specifying values for αk , βk
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Beta distribution

For instance, let us say we are not very sure about what we
think the value of µa,b should be, perhaps because we do not
know if the sample being sequenced contains tumorous or
non-tumorous tissues5.

We might then try αab = βab = 3

x <- seq(0.0, 1.0, 0.01)

y <- dbeta(x, 3, 3)

title <- expression(paste(alpha,"=",beta,"=3"))

plot(x, y, type="l",main=title,

xlab="x",ylab="pdf",col="blue",lty=1,cex.lab=1.25)

5Tumor tissue may be characterized by the loss of heterozygosity (LOH) of
large chromosomal regions.
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Beta distribution

αab = βab = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

α=β=3

x

pd
f

x is here representing a value for µab, and the y axis
reflects our belief about the prior probability of this value
Question: Are we very sure about µab?
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Beta distribution

αab = βab = 500.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

α=β=500

x

pd
f

Question: How sure are we now about µab?
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Beta distribution in SNVMix

The expected value of a Beta(α + β) distribution is simply

α

α + β

In SNVMix, these values are defined as

αaa = 1000, βaa = 1, that is, our prior belief in reference
reads given homozygous reference sequence is 0.999001

αab = 500, βab = 500, that is, our prior belief in reference
reads given a het true sequence is 0.5

αbb = 1, βbb = 1000 (vice versa to αaa = 1000, βaa = 1)
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SNVMix: M-step updating equation for µ

The maximization step updating equation basically adds to ob-
served counts for a certain true genotype to our prior.

µnewk =

∑T
i=1 a

I (Gi=k)
i + αk∑T

i=1 N
I (Gi=k)
i + αk + βk − 2

(20)

Note that in this notation, I (Gi = k) is an indicator
function so that the expression is zero unless Gi = k

The update is simply the proportion of the observed
reference reads with “pseudocounts” added from the Beta
prior (amongst all positions called to genotype k).

For details recall lecture # 2
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Dirichlet

The Dirichlet distribution is the multivariate generalization of
the Beta distribution and represents the conjugate prior of
the multinomial distribution. Thus, just as SNVMix used the
Beta distribution as a prior for µ (binomial distribution of read
counts), it uses the Dirichlet as a prior for π (multinomial dis-
tribution for the three possible genotypes).

In SNVMix, the values for the prior are set to

δ(〈a, a〉) δ(〈b, b〉) δ(〈b, b〉)

1000 100 100
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Dirichlet

Thus, the prior is skewed toward πaa assuming that most posi-
tions will be homozygous for the reference allele. The pseudo-
counts are essentially equivalent to having seen 1000 + 100 +
100 = 1200 positions with the distribution 83.3% 〈a, a〉, and
8.3% each for 〈b, b〉 and 〈b, b〉.

The weight of the prior belief is reflected in the number of
pseudocounts. For instance, the following counts result in the
same proportion but there is much less weight of prior belief

δ(〈a, a〉) δ(〈b, b〉) δ(〈b, b〉)

10 1 1
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Dirichlet

A Dirichlet distribution of order k (3 in our example) is a PDF
that represents the belief (“probability”) that the probabilities
of k distinct events (in our case, the genotypes
〈a, a〉 , 〈a, b〉 , 〈b, b〉) are xi given that each event has been
observed αi − 1 times.

f (x1, x2, . . . , xk−1;α1, α2, . . . , αk) =
1

B(α)

k∏
i=1

xαi−1
i (21)

Note that by convention f has k − 1 arguments. Since∑k
i=1 xi = 1 there is no need to show the kth argument.

B(α) is the Beta function

B(α) =

∏k
i=1 Γ(αi )

Γ
(∑k

i=1 αi

) (22)
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Dirichlet distribution with a low number of pseudocounts (rel-
atively weak prior):

δ(〈a, a〉) = 10

δ(〈a, b〉) = 1

δ(〈b, b〉) = 1
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Dirichlet distribution with a higher number of pseudocounts
(relatively strong prior):

δ(〈a, a〉) = 1000

δ(〈a, b〉) = 100

δ(〈b, b〉) = 100
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SNVMix: M-step updating equation for π

The update equation for π is similar to that for µ

πnewk =

∑T
i=1 I (Gi = k) + δ(k)∑

j∈{〈a,a〉,〈a,b〉,〈b,b〉}
∑T

i=1 I (Gi = j) + δ(j)
(23)
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SNVMix: Initialize EM

We are now in a position to initialize the EM

We need:

Mapped NGS reads comprising i = 1, . . . ,T genomic
positions, each of which has Ni reads with ai reference
and bi nonreference bases.

Initialize πk =
δ(k)

Nδ
where Nδ =

δ(k)∑
j δ(j)

Initialize µk =
αk

αk + βk
pick a tolerance to judge convergence
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SNVMix: Run EM

The EM algorithm iterates between the E-step where we assign
the genotypes using Equation (??) and the M-step where we
re-estimate the model parameters with equations (??) for π,
(??) for µ.

At each iteration we evaluate the complete data log-likelihood
as given by Equation (??) and the algorithm terminates when
this quantity no longer increases
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SNVMix1 vs SNVMix2

The SNVMix algorithm was later extended to include mapping
and base qualities into the same Bayesian framework, primarily
by adapting the formulas used for the EM equations. We will
not discuss this herea

a
Goya R et al. (2010) Bioinformatics 26:730–736.

Performance of SNVMix2 algorithm
on simulated data with increasing
levels of certainty in the base call
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Summary

In these two lectures we have examined how to call variants. We have

studied two classes of algorithms, MAP estimation and expectation max-

imization, and how they are used in two variant calling algorithms, MAQ

and SNVMix. For practical use, newer variant callers, especially GATK,

are recommended.

What you should now know:

The kinds of data used in variant calling (mapping quality,
base quality, depth, . . .)

How this data is exploited to improve variant calling

Bayes’ law and how it can be used to estimate parameters

Be able to interpret the major formulae of MAP and EM
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The End of the Lecture as We Know It

Email: peter.robinson@charite.de

Office hours by appointment

Lectures were once useful; but now, when all can read, and books
are so numerous, lectures are unnecessary. If your attention fails,
and you miss a part of a lecture, it is lost; you cannot go back as

you do upon a book... People have nowadays got a strange
opinion that everything should be taught by lectures. Now, I
cannot see that lectures can do as much good as reading the
books from which the lectures are taken. I know nothing that

can be best taught by lectures, except where experiments are to
be shown. You may teach chymistry by lectures. You might

teach making shoes by lectures!

Samuel Johnson, quoted in Boswell’s Life of Johnson (1791).

mailto:peter.robinson@charite.de

