Einführung in NGS & Exomsequenzierung

Peter N. Robinson

Institut für medizinische Genetik Charité Universitätsmedizin Berlin

26. Januar 2015

Outline

- Sanger-Sequenzierung
- Die n\u00e4chste Generation
- 3 Exom
- Madeln in Heuhaufer
- 5 HMM Algorithmus für IBD2

Fred Sanger: 1¹/₄ Nobelpreise

- 1958: Nobelpreis für Chemie "für die Aufklärung der Insulin-Struktur und seine Arbeiten zur Protein-Sequenzierung".
- 1980, Nobelpreis für Chemie
 (¹/₄) "für Untersuchungen zur
 Ermittlung der Basensequenz
 in Nukleinsäuren.".
- Sangersequenzierung: Bis vor kurzem die Standardmethode zur Ermittlung von DNA-Sequenzen

1918– British biochemist

Sangersequenzierung

- Kettenabbruchmethode (Didesoxy-ddNTPs)
- "Zutaten":
 - DNA-Matrize.
 - **DNA-Primer**
 - **DNA-Polymerase**
 - normale Desoxynukleosidtriphosphat A,C,G,T (dNTP)
 - Kettenabbruch-ddNTPs

Labelled Template Primer Add dNTPs and Polymerase Template/Product

4 / 56

a.

Denatured

DNA Synthese: Chain extension

DNA wird von 5' nach 3' verlängert

Sangersequenzierung: Kettenabbruch-ddNTPs

Desoxycytosin (dCTP)

Didesoxycytosin (ddCTP)

 Diese Kettenabbruch-ddNTPs besitzen keine 3'-Hydroxygruppe: Werden sie in den neusynthetisierten Strang eingebaut, ist eine Verlängerung der DNA durch die DNA-Polymerase nicht mehr möglich, da die OH-Gruppe am 3'-C-Atom für die Verknüpfung mit der Phosphatgruppe des nächsten Nukleotids fehlt.

Sangersequenzierung: Radioaktiv

- radioaktiv markierte Nukleotide, z.B., dATP–[α-³³P]
- oder markierte Primer, vier Reaktionen (eine für jedes ddNTP)

Sangersequenzierung: Fluoreszent

- "Dye-terminator" Sequenzierung
- jedes ddNTP wird mit einem unterschiedlichen fluoreszenten Farbstoff markiert (unterschiedliche Wellenlänge)
- Daher nur eine Reaktion notwendig
- Intensität jeder Wellenlänge wird gegen die elektrophoretische Zeit geplottet ("chromatogram")
- Farben: A, T, C, G

Sangersequenzierung: HGP

- Sangersequenzierung ermöglichte die erste Charakterisierung des humanen Genoms
- Aber: Beschränkter Durchsatz
- In der Glanzzeit der Sangersequenzierung, 400 kb pro Machine pro Tag
- ca. 45.000 Läufe für ein humanes Genom (6x) ...

International Human Genome Sequencing
Consortium (2001) Initial sequencing and
analysis of the human genome

Nature 409:860-921

Outline

- Sanger-Sequenzierung
- Die n\u00e4chste Generation
- 3 Exom
- Madeln in Heuhaufen
- 5 HMM Algorithmus für IBD2

Next-Generation Sequencing

 NGS: verschiedene Technologie, welche eine massive Parallelisierung der DNA-Sequenzierung ermöglichen

Next-Generation Sequencing (NGS)

- Genbank 2005 50 Gb Daten
- Illumina GA: 1000 Genomes-Project im Jahr 2008 2,500 Gb
- "Each week in Sept-Oct of 2008, the 1000 Genomes Project created the equivalent of all the data in GenBank"

Thomas Keane and Jan Aerts. Tutorial 1: Working with next-generation sequencing data - A short primer on QC, alignment, and variation

Peter N. Robinson (Charité) Exom 26. Januar 2015 12 / 56

Illumina Sequencing

- Mehrere konkurriende NGS-Platformen
- Diejenige von Illumina scheint momentan für die meisten Applikationen überlegen zu sein
- Vier grundlegende Schritte:

1. DNA & Library Präparation	Fragmentierung der DNA und Anfügung von Adapto-	
	ren	
2. Chip/flowcell Präp	DNA-Fragmente an Flowcell anheften, amplifizieren	
	(colony PCR)	
3. Sequenzierung	Massiv parallele DNA Sequenzierung	
4. Bioinformatische Analyse	verschieden	

Library Präp: Adapterligation

 Erster Schritt: Fragmentierung der DNA-Probe gefolgt von Adaptorligation¹

Zielstellung der Adapterligation: Spezielle Adaptoren werden an die DNA-Fragmente der Library angefügt (ligiert), was drei Zwecken dient:

- Molekulare Indizierung (Barcoding) von Proben
- Spezifische PCR-Anreicherung der DNA-Fragmente der Library
- Im nachfolgenden Schritt die Bindung der Adaptoren an die Flowcell

Library Prep (3): Adapter ligation

- DNA-Ligation: DNA-Ligase ist ein Enzym, das durch die Bildung einer Phosphodiästerbindung zwei DNA-Fragmente miteinander verbindet
- Wir verwenden DNA-Ligase, um die NGS-Adaptoren an die Fragmente der DNA-Library zu verbinden

Library Präp: Anreicherungs-PCR

Zielstellung der Anreicherungs-PCR (enrichment PCR):

- Spezifische PCR-Anreicherung der DNA-Fragmente der Library
- die Menge an DNA in der Library vermehren

- PCR wird mit Primern durchgeführt, welche sich an die Sequenzen der Adaptoren anlegen (annealing)
- Geringe Anzahl von PCR-Zyklen (10), damit die Verteilung der in der Library vertretenen Sequenzen nicht verzerrt wird

Library Präp: Anreicherungs-PCR

- Der P7-Primer enthält eine Sequenz, die zu den letzten 24 Nukleotiden des Adaptors revers komplementär ist
- 5'-CAAGCAGAAGACGGCATACGAGAT-3'

5'-(...)-NNNNN-ATCTCGTATGCCGTCTTCTGCTTG-3'.....3'-TAGAGCATACGGCAGAAGACGAAC-5'

Library Präp: Anreicherungs-PCR

- In den übrigen Zyklen kann auch der P5 binden (annealing)
- P5 ist mit den ersten 44 Nukleotiden des Universaladaptors identisch, und kann somit an dessen durch die PCR erzeugte revers komplementäre Sequenz binden
- 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA-3'

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3'

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA-3'

Flow-Cell Präp

Zielstellung der Flowcell Präp:

Ligierte DNA-Fragmente an die Flowcell binden

0

Flow-Cell Präp

 Eine Flowcell ("Flusszelle") ist im Prinzip ein Objektträger aus beschichtetem Glaß mit 8 Kanälen

Flow-Cell Präp – Library-Ablagerung

Library deposition

- Extensionsgemisch (Puffer, dNTP's, Taq-Polymerase) wird in die Kanäle der Flowcell gepumpt
- Die Oligos an der Oberfläche der Flowcell werden entsprechend der ligierten DNA-Fragmente verlängert

Flow-Cell Präp – Brückenamplifikation

- PCR-Amplifikation an der Oberfläche der Flowcell, "bridge amplification": (60°C) für 35 Zyklen:
 - Formamide at 60° C \approx "Denaturation"
 - $oldsymbol{2}$ Extensionspuffer pprox "annealing step"
 - \odot Extensionsgemisch \approx "Extension (Verlängerung)" der "normalen" PCR

Sequenzierung durch Synthese

- Sequenzierung durch Synthese (Sequencing by synthesis; SBS)
 - Pro Zyklus wird nur eine Base angefügt (4 markierte ddNTPs)
 - Unterschied zu Sangersequenzierung: Die ddNTPs haben reversible Terminatoren
 - Nach jedem Zyklus wird die jeweils angefügte Base durch die Bestimmung der spezifischen Wellenlänge der eingebauten ddNTP gemessen
 - Aufhebung der Blockierung
 - ⇒ Zyklus i+1

Sequenzierung durch Synthese

Sequencing by synthesis:

Illumina: Base-Calling

 Base-calling Algorithmen weisen jeder Position ein Nukleotid und einen Qualitätswert zu

Die Qualität wird durch verschiedene Parameter beeinflusst:

- PCR Fehler bei der Kolonie-Amplifikation
- Phasenfehler (Bestimmte Stränge bauen in einem bestimmten Zyklus kein Nukleotid ein und hängen hinter anderen Strängen nach)
- Unreinheiten auf der Flow cell

Die Qualität der Basenzuweisungen (base calls) wird mit dem **PHRED**-Score angegeben

FASTQ und PHRED-Qualitätsscores

FASTQ-Format.

```
@My-Illu:6:73:941:1973#0/1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

- Read-ID
- die Sequenz
- '+' (optional Beschreibung der Sequenz)
- ASCII-kodierte PHRED-Scores für die entsprechenden Basen

PHRED-Scores

Der PHRED-Score ist definiert als

$$Q_{PHRED} = -10\log_{10}p \tag{1}$$

wobei *p* die Wahrscheinlichkeit angibt, dass die entsprechende Basenzuweisung ("base call") falsch ist.

Q_{PHRED}	p	Fehlerfreiheit
10	10^{-1}	90%
20	10^{-2}	99%
30	10^{-3}	99.9%
40	10^{-4}	99.99%
50	10^{-5}	99.999%

PHRED-Score: Beispiel

 Medianwerte (rot) und Durchschnittswerte (blau) für PHRED-Qualitätsscores bei Illumina 1G (alt!) Daten

Variant-Calling

- Base calls & Phred scores
- Mapping quality
- Alignment

Dunkler Hintergrund ⇔ gute Mapping-Qualität Hoher Kontrast ⇔ hohe Basengualität

Seltene Erkrankungen

- Häufigkeit in der Bevölkerung
 1 · 2000 Personen
- ca. 6% der Bevölkerung hat jeweils eine bestimmte seltene Erkrankung
- Wichtige Subklasse der seltenen Erkrankungen: Mendel'sche (monogene) Erkrankungen

Mendelian disease Gen bekannt 2835 Gen unbekannt 1777 Vermutete SE 1989

∴ ≥ 3766 Krankheitsgene bleiben zu entdecken

Das Exom

- 249 730 Exons von 24 714
 Genen
- Die meisten Mutationen bei Mendel'schen Erkrankungen betreffen das Exom
 - Nonsense-Mutationen
 - Missense-Mutationen
 - Spleiß-Mutationen
 - Insertionen/Deletionen

"Capture"-(Anreicherungs)-Verfahren

Agilent's SureSelect Exome Enrichment System

die Nadel finden...

- Typisches Ergebnis einer Exomsequenzierung: 40000 oder mehr Varianten
- Häufige und eher nicht pathogene Varianten können herausgefiltert werden, aber es bleiben typischerweise Hunderte bis zu über Tausend Varianten

Gilissen C et al (2012) Disease gene identification strategies for exome sequencing European Journal of Human Genetics 20:490-497

Filtern von Exomdaten

- ullet Die Exomsequenzierung identifiziert typischerweise \sim 30.000 Varianten in jedem Individuum
- Ca. 10.000 dieser Varianten sind in oder direkt neben Exons gelegen
- Ca. 5.000 dieser Varianten sind Missense, Nonsense, Frameshift, usw.
- Wie k\u00f6nnen wir bei Exomsequenzierungsprojekten die verantwortlichen Mutationen finden?

Filtern von Exomdaten

Wir führen eine Studie mit n Patienten durch und charakterisieren Varianten in M Genen ($n \approx 10$ und $M \approx 20.000$).

- Wir bilden eine n × M Matrize, C, wobei das Element C_{ij} die Anzahl von Varianten in Gene j bei Patient i angibt
- Sei X_{ij} eine Kodierung des Genotyps von Gene j bei Patient i
- Für eine autosomal rezessive Krankheit gilt:

$$X_{ij} = I(C_{ij} \geq 2)$$

(d.h., ein Gen muss mindestens zwei Varianten aufweisen, um als Kandidat für eine autosomal rezessive Erkrankung infrage zu kommen)

Für eine autosomal dominante Krankheit gilt:

$$X_{ij} = \mathbf{I}(C_{ij} \geq 1)$$

Filtern von Exomdaten

- Die Exomsequenzierung identifiziert bei einem einzelnen Patienten m Kandidatenmutationen in den M Genen.²
- Die Wahrscheinlichkeit, dass eine bestimmte Mutation in einem der M Genen lokalisiert ist, kann eingeschätzt werden als

$$p = \frac{1}{M} \tag{2}$$

 daher kann die per Zufall zu erwartende Anzahl von Mutationen in einem bestimmten Gen j bei einer Gesamtzahl von m Mutationen nach der Binomialverteilung angegeben werden als

$$C_{ij} \sim \mathrm{B}(m, \frac{1}{M})$$
 i.e. $P(C_{ij} = k) = {m \choose k} \frac{1}{M}^k \left(1 - \frac{1}{M}\right)^{m-k}$ (3)

26 Januar 2015

36 / 56

Peter N. Robinson (Charité) Exom

m ist typischerweise eine Zahl wie 200–500 Varianten.

Wir interessieren uns für die Statistik

$$T = \sum_{i=1}^{n} X_{ij} \tag{4}$$

- d.h., wir sequenzieren n Patienten. Was ist die Wahrscheinlichkeit, dass T Patienten Kandidatenmutationen in einem Gen allein per Zufall aufweisen³?
- Wir konzentrieren uns im Folgenden auf autosomal dominante Gene.

das echte Krankheitsgen ist. Was ist aber wenn 13 von 100 Patienten eine Mutation haben? Ist das mehr als erwartet? 🔻 🗏 🕒 💆 🛷 🔍

 $^{^3}$ Zum Beispiel, wenn 100 von 100 Patienten mit Krankheit X eine Mutation in Gen Y haben, dass erscheint es sicher dass Y

$$P(X_{ij} = 1) = P(C_{ij} \ge 1)$$

$$= 1 - P(C_{ij} = 0)$$

$$= 1 - {m \choose 0} \frac{1}{M}^{0} \left(1 - \frac{1}{M}\right)^{m-0}$$

$$= 1 - \left(1 - \frac{1}{M}\right)^{m}$$

• Definieren⁴ wir $q = \left(1 - \frac{1}{M}\right)$

$$P(X_{ii} = 1) = 1 - q^m$$

Peter N. Robinson (Charité) Exom 26. Januar 2015 38 / 56

• Faktorisieren wir nun 1 $-q^m$

$$1 - q^m = (1 - q)(1 + q + q^2 + q^3 + \dots + q^{m-1})$$
 (5)

Daher ergibt sich

$$P(X_{ij} = 1) = 1 - q^{m}$$

$$= (1 - q)(1 + q + q^{2} + q^{3} + \dots + q^{m-1})$$

$$= \left(1 - \left(1 - \frac{1}{M}\right)\right)(1 + q + q^{2} + q^{3} + \dots + q^{m-1})$$

$$= \frac{1}{M}(1 + q + q^{2} + q^{3} + \dots + q^{m-1})$$

 In den Klammern befinden sich m Ausdrücke mit einem Wert zwischen q^{m-1} und 1.

$$q^{m-1}\frac{m}{M} \le P(X_{ij}=1) \le \frac{m}{M} \tag{6}$$

Für typische Werte ist diese Approximierung sehr gut, z.B. $q^m=0.985$ mit m=300, M=20.000. Daher haben wir $P(X_{ij}=1)\approx \frac{m}{M}$ für die Wahrscheinlichkeit unter der Nullhypothese, dass eine Mutation in Gen j auftritt

- Wir haben daher gezeigt, dass die Wahrscheinlichkeit, dass eine Mutation in Gen j auftritt, nach Bernoulli $(p \approx \frac{m}{M})$ verteilt ist
- Mit n Patienten haben wir n Bernoullis, d.h. die Binomialverteilung:

$$T \sim \mathrm{B}(n, \frac{m}{M})$$
 i.e. $P(T = k) = \binom{n}{k} \left(\frac{m}{M}\right)^k \left(1 - \frac{m}{M}\right)^{n-k}$ (7)

Ng et al.: Kabuki Syndrome

Exome sequencing identifies *MLL2* mutations as a cause of Kabuki syndrome

Sarah B Ng^{1,7}, Abigail W Bigham^{2,7}, Kati J Buckingham², Mark C Hannibal^{2,3}, Margaret J McMillin², Heidi I Gildersleeve², Anita E Beck^{2,3}, Holly K Tabor^{2,3} Gregory M Cooper¹, Heather C Mefford², Choli Lee¹, Emily H Turner¹, Joshua D Smith¹, Mark J Rieder¹, Koh-ichiro Yoshiura⁴, Naomichi Matsumoto⁵, Tohru Ohta⁶, Norio Niikawa⁶, Deborah A Nickerson¹. Michael I Bamshad^{1,2,3} & Jav Shendure¹

Nature Genet 42:790-793, 2010

- Seltene Mendel'sche Erkrankung
- Die allermeisten Fälle treten sporadisch auf
- V.a. autosomal dominant

Ng et al.: Kabuki Syndrome (3)

- Wir können nun die statistische Signifikanz schätzen
- Bei einem einzelnen Patienten werden 753 Gene mit Kandidatenmutationen identifiziert
- unser $p = \frac{753}{20.000}$
- Die Wahrscheinlichkeit, dass wir bei genau 7 von 10 Patienten eine Mutation in einem bestimmten Gen (MLL2) sehen, ist daher
 - > p<-753/20000
 > dbinom(7,10,p)
 - [1] 1.146926e-08

Ng et al.: Kabuki Syndrome (3)

 Um die statistische Signifikanz zu berechnen, müssen wir die Wahrscheinlichkeit berechnen, dass wir ein mindestens so extremes Ergebnis beobachten. Wir führen zudem eine Bonferroni-Korrektur durch (20.000 Gene: 20.000 Tests!)

```
> sum(dbinom(7:10,10,p))*20000
[1] 0.0002327798
```

- d.h., wir erhalten einen korrigierten P-Wert von 0.0002.
- Es konnte in der Folge von Ng et al. auch bewiesen werden, dass MLL2 das Krankheitsgen für Kabuki-Syndrom ist

Familien-basierte Identifikation von Krankheitsgenen durch NGS

- Die oben vorgestellte Methode funktioniert nur dann, wenn mehrere Patienten mit derselben Krankheit untersucht werden k\u00f6nnen, was bei seltenen genetischen Krankheiten h\u00e4ufig unm\u00f6glich ist
- Im Folgenden wird eine Methode vorgestellt, die für die Untersuchung von einer einzelnen Familie mit einer autosomal rezessiven Erkrankung geeignet ist

Markow-Kette

- P(SSSCCCCRRRR)= $0.8^3 \times 0.1 \times 0.5^3 \times 0.4 \times 0.6^3 = 5.5 \times 10^{-4}$
- P(SCRSCRSCR)= $0.1 \times 0.4 \times 0.2 \times 0.1 \times 0.1 \times 0.4 \times 0.2 \times 0.1 \times 0$

45 / 56

Markov-Kette vs. Hidden Markov Model

- Bei einer Markov-Kette können wir die Zustände (states) direkt beobachten (e.g., Sunny, Cloudy, and Rainy).
- Bei einem hidden Markov model (HMM) können wir die Zustände nicht beobachten, sondern lediglich die Emissionen der Zustände

Bayes-Theorem

- Ein HMM ist ein Bayes'sches Netzwerk für sequentielle Daten
- Mit dem Bayes-Theorem können wir auf die wahrscheinlichste Reinhenfolge der verborgenen Zustände schließen (M) gegeben die beobachteten Daten (D)

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}.$$
 (8)

 Unser Model wird die Reihenfolge von identical by descent (IBD) und nicht-IBD Zustände entlang der Chromosome modellieren.
 Dabei sind die Emissionen die Basenzuweisungen (base calls)

IBD=2

- IBD=2: Identische mütterliche und v\u00e4terliche Haplotypen
- Bei autosomal rezessiven Erkrankungen muss das Krankheitsgen in einem IBD=2 Bereich gelegen sein
- Weitere IBD=2 Bereiche können auch per Zufall vorkommen

IBD=2

- Die unbeobachteten Zustände der chromosomalen Regionen: IBD=2 (D) oder nicht IBD=2 (N)
- Die Transitionen zwischen
 Zuständenhängen von Recombinationen
 bei einem oder mehreren Geschwistern
 ab
- Die Emissionen: Alle betroffenen Geschwister haben dieselben homozygoten bzw. heterozygoten Varianten (IBS*) oder nicht.

HMM

Hidden Markov Model

 Unbeobachtete Zustände geben beobachtbare Ausgabesymbole ("Tokens") aus

 Alle Transitions und Emissionen haben eine verhältnismäßig hohe Wahrscheinlichkeit außer einer IBD=2 → ¬IBS* Emission (base call error⁵ ca. 5%)

engl: Basenzuweisungsfehler

Hidden Markov Model

- Alle Transitions und Emissionen haben eine verhältnismäßig hohe Wahrscheinlichkeit außer den zwei Transitionen $\theta_{10}(t)$ und $\theta_{01}(t)$
- Dies ist sehr unwahrscheinlich: Zwei Rekombinationen innerhalb einer kurzen Entfernung, welche jedoch ohne Basenzuweisungsfehler die ¬IBS*-Beobachtung "erklären"

Identifikation von IBD=2 Regionen in einer HPMR

- Das HMM wird mit dem Backward/Forward Algorithmus dekodiert: Somit werden die A posteriori
 Wahrscheinlichkeiten für jede Variante berechnet, vom IBD=2 Zustand ausgegeben worden zu sein.
- Die *A posteriori* Wahrscheinlichkeiten für IBD=2 vs. IBD≠2 kann geplottet werden
- $lod_t = log_{10} \frac{P(X_t=1|Y=y)}{P(X_t=0|Y=y)}$

Glycosylphosphatidylinositol (GPI) Pathway

- PIGV, ein Enzym im GPI-Anker-Biosynthese-Pathway, war unter den Genen im IBD=2 Bereich
- PIGV codiert für die zweite Mannosyltransferase im GPI-Anker-Biosynthese-Pathway
- > 100 Proteine werden durch einen GPI-Anker am C-Terminus modifiziert

PIGV Mutations Causes HPMR Syndrome

 Homozygote und heterozygote Mutationen sind in drei weiteren Familien nachgewiesen worden

zum Schluss

Email: peter.robinson@charite.de

weiterführende Literatur

- Gilissen C et al (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20:490-7.
- Zhi D, Chen R (2012) Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing. PLoS One 7:e31358.
- Krawitz et al, (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829.